Contrasting Historical and Recent Breakup Styles on the Meade River of Arctic Alaska in the Context of a Warming Climate
Richard A. Beck, Kenneth M. Hinkel, Wendy R. Eisner, Douglas Whiteman, Christopher D. Arp, Richard Machida, Chris Cuomo, Hongxing Liu, Changjoo Kim, Andrew J. Rettig, Chantal Ivenso, Bo Yang, Qiusheng Wu, Haibin Su, Shujie Wang, Karen Frey, John D. Lenters, Brittany L. Potter
Atmospheric Radiation Measurement Program, Atqasuk, USA.
Department of Geography, Clark University, Worcester, USA.
Department of Geography, University of Cincinnati, Cincinnati, USA.
Department of GeogSchool of Natural Resources, University of Nebraska at Lincoln, Lincoln, USA raphy, Clark University, Worcester, USA;.
Department of Philosophy, University of Georgia, Athens, USA.
Department of Physics and Geosciences, Texas A&M University-Kingsville, Kingsville, USA.
Information Technology, University of Alaska at Fairbanks, Fairbanks, USA.
School of Natural Resources, University of Nebraska at Lincoln, Lincoln, USA.
Water and Environmental Research Center, University of Alaska, Fairbanks, USA.
DOI: 10.4236/ajcc.2013.22016   PDF   HTML   XML   5,246 Downloads   7,579 Views   Citations


Although data for temporal spring river ice breakup are available for a number of Arctic rivers, there is a paucity of information related to the type of breakup. The Arctic Climate Impact Assessment (ACIA) of 2005 predicted a transition from mechanical to thermal spring breakup of ice cover on arctic rivers, with this shift being greatest in exclusively Arctic watersheds where observed warming is most pronounced. We describe a rare instance of an entirely Arctic river with limited but well documented historical and recent data regarding the type of breakup. Time-series ground imagery of spring breakup from 1966, 1975, 1978, 2009, 2010 and 2012, incombination with interviews of local inhabitants, documents a shift from predominantly mechanical to predominantly thermal breakup after spring 1978 and by spring 2009 within the context of a locally and regionally warming Arctic. The resultant shift from predominantly mechanical to predominantly thermal breakup is predicted to result in significant changes to water, sediment, nutrient and organic carbon fluxes, as well as riparian ecology and human activities.

Share and Cite:

R. Beck, K. Hinkel, W. Eisner, D. Whiteman, C. Arp, R. Machida, C. Cuomo, H. Liu, C. Kim, A. Rettig, C. Ivenso, B. Yang, Q. Wu, H. Su, S. Wang, K. Frey, J. Lenters and B. Potter, "Contrasting Historical and Recent Breakup Styles on the Meade River of Arctic Alaska in the Context of a Warming Climate," American Journal of Climate Change, Vol. 2 No. 2, 2013, pp. 165-172. doi: 10.4236/ajcc.2013.22016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Church, “Hydrology and Permafrost with Reference to Northern North America,” Permafrost Hydrology, Proceedings of the Workshop Seminar, Canadian National Committee, International Hydrological Decade, Ottawa, Vol. 7, 1974, pp. 7-20.
[2] G. D. Ashton, “River Ice,” Annual Reviews of Fluid Mechanics, Vol. 10, 1985, pp. 369-392. doi:10.1146/annurev.fl.10.010178.002101
[3] T. D. Prowse, “The Environmental Significance of Ice to Cold Regions Stream Flow,” Freshwater Biology, Vol. 32, No. 2, 1994, pp. 241-259. doi:10.1111/j.1365-2427.1994.tb01124.x
[4] T. D. Prowse and S. Beltaos, “Climatic Control of River-Ice Hydrology: A Review,” Hydrological Processes, Vol. 16, No. 4, 2002, pp. 805-822. doi:10.1002/hyp.369
[5] S. Beltaos, “Threshold between Mechanical and Thermal Breakup of River Ice Cover,” Cold Regions Science and Technology, Vol. 37, No. 1, 2003, pp. 1-13. doi:10.1016/S0165-232X(03)00010-7
[6] S. Beltaos and B. C. Burrell, “Climate Change and River Ice Breakup,” Canadian Journal of Civil Engineering, Vol. 30, No. 1, 2003, pp. 145-155. doi:10.1139/l02-042
[7] S. Beltaos and T. D. Prowse, “River-Ice Hydrology in a Shrinking Cryosphere,” Hydrological Processes, Vol. 23, No. 1, 2009, pp. 122-144. doi:10.1002/hyp.7165
[8] T. D. Prowse and J. M. Culp, “Ice Breakup: A Neglected Factor in River Ecology,” Canadian Journal of Civil Engineering, Vol. 30, No. 1, 2003, pp. 128-144. doi:10.1139/l02-040
[9] L.C. Smith, “Trends in Russian Arctic River-Ice Formation and Breakup, 1917 to 1994,” Physical Geography, Vol. 21, 2000, pp. 46-56.
[10] L. P. de Rham, T. D. Prowse and B. Bonsal, “Temporal Variations in River-Ice Breakup over the Mackenzie River Basin,” Journal of Hydrology, Vol. 349, No. 3-4, 2008, pp. 441-454. doi:10.1016/j.jhydrol.2007.11.018
[11] T. M. Pavelsky and L. C. Smith, “Spatial and Temporal Patterns in Arctic River Ice Breakup Observed with MODIS and AVHRR Time Series,” Remote Sensing of the Environment, Vol. 93, No. 3, 2004, pp. 328-338. doi:10.1016/j.rse.2004.07.018
[12] J. J. Magnuson, D. M. Robertson, R. H. Wynne, B. J. Benson, D. M. Livingstone, T. Arai, R. A. Assel, R. D. Barry, V. Card, E. Kuusisto, N. G. Granin, T. D. Prowse, K. M. Stewart and V. S.Vuglinski, “Historical Trends in Lake and River Ice Cover in the Northern Hemisphere,” Science, Vol. 289, No. 5485, 2000, pp. 1743-1746. doi:10.1126/science.289.5485.1743
[13] B. J. Peterson, R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklamanov, I. A. Shiklamonov and S. Rahmstorf, “Increasing River Discharge to the Arctic Ocean,” Science, Vol. 298, No. 5601, 2002, pp. 2171-2173. doi:10.1126/science.1077445
[14] J. E. Walsh, et al., “Arctic Climate Impact AssessmentCryosphere and Hydrology,” Vol. 6, The University of Alaska, Fairbanks, 2005, pp. 183-242.
[15] T. D. Prowse, et al., “Snow, Water, Ice and Permafrost in the Arctic (SWIPA)-Changing Lake and River Ice Regimes: Trends, Effects and Implications,” Report by the Arctic Monitoring and Assessment Programme (AMAP) to the Arctic Council, AMAP Secretariat, Oslo, Norway, 2011, pp. 1-51.
[16] P. L. Johnson and F. B. Kistner, “Breakup of Ice, Meade River, Alaska,” US Army Cold Regions Research Engineering Laboratory Special Report, Vol. 118, 1967, pp. 1-17.
[17] W. R. Eisner, C. J. Cuomo, K. M. Hinkel, B. M. Jones and R. H. Brower, “Advancing Landscape Change Research through the Incorporation of Inupiaq Knowledge,” Arctic, Vol. 62, No. 4, 2009, pp. 429-442.
[18] R. A. Beck, A. J. Rettig, C. Ivenso, W. R. Eisner, K. M. Hinkel, B. M. Jones, C. D. Arp, G. Grosse and D. Whiteman, “Sikuliqiruq: Ice Dynamics of the Meade River— Arctic Alaska, from Freeze-Up to Breakup from TimeSeries Ground Imagery,” Polar Geography, Vol. 33, No. 3-4, 2010, pp. 115-137. doi:10.1080/1088937X.2010.545753
[19] J. C. Reed, “Exploration of Naval Petroleum Reserve No. 4 and Adjacent Areas Northern Alaska, 1944-1953—Part 1, History of the Exploration,” USGS Professional Paper No. 301, p. 55.
[20] D. R. Helsel and R. M. Hirsch, “Statistical Methods in Water Resources, Chapter A3, Book 4, Hydrologic Analysis and Interpretation,” Techniques of Water-Resources Investigations of the United States Geological Survey.
[21] E. Kalnay, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bulletin American Meteorological Society, Vol. 77, No. 3, 1996, pp. 437-471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[22] K. M. Hinkel, et al., “Initial Results from the Circumarctic Lakes Observation Network (CALON) Project,” American Geophysical Union, Fall Meeting, Abs. C21B0466, 2011.
[23] R. K. Haugen, J. Brown and T. A. May, “Climatic and Soil Temperature Observations at Atkasook on the Meade River, Alaska, Summer 1975,” US Army Cold Regions Research and Engineering Laboratory Special Report Number 76-1, 1976, pp. 1-25.
[24] S. H. Jones, “Streamflow in the NPRA, 1977,” USGS Alaska Accomplishments during 1977, USGS Circular 772-B, 1978, p. B-29.
[25] R. W. Paulson, E. B. Chase and R. S. Roberts, “National Water Summary 1988-1989—Floods and Droughts: Alaska,” USGS Water-Supply Paper 2375, 1991, p. 175.
[26] R. K. Haugen and J. Brown, “Coastal-Inland Distributions of Summer Air Temperature and Precipitation in Northern Alaska,” Arctic Alpine Research, Vol. 12, No. 4, 1980, pp. 403-412. doi:10.2307/1550491
[27] K. M. Hinkel, Z. Lin, Y. Sheng and E. A. Lyons, “Spatial Patterns of Lake Ice Melt Out near Barrow, Alaska,” Polar Geography, Vol. 35, No. 1, 2012, pp. 1-18. doi:10.1080/1088937X.2011.654355
[28] N. Kozlenko and M. O. Jeffries, “Baythymetric Mapping of Shallow Water in Thaw Lakes on the North Slope of Alaska with Spaceborne Imaging Radar,” Arctic, Vol. 53, No. 3, 2000, pp. 306-316.
[29] J. Maslanik, J. Stroeve, C. Fowler and W. Emery, “Distribution and Trends in Arctic Sea Ice Age through Spring 2011,” Geophysical Research Letters, Vol. 38, No. 13, 2011, Article ID: L13502. doi:10.1029/2011GL047735
[30] D. Perovich, W., Meier, M. Tschudi, S. Gerland and J. Richter-Menge, “Sea Ice,” Arctic Report Card: Update for 2012. NOAA, 2012.
[31] V. E. Romanovsky, et al., “Permafrost,” Arctic Report Card: Update for 2012. NOAA, 2012.
[32] C. Arp, B. M. Jones, Z. Lu and M. S. Whitman, “Shifting Balance of Thermokarst Lake Ice Regimes across the Arctic Coastal Plain of Northern Alaska,” Geophysical Research Letters, Vol. 39, No. 16, 2012, Article ID: L16503. doi:10.1029/2012GL052518
[33] C. Derksen and R. Brown, “Spring Snow Cover Extent Reductions in the 2008-2012 Period Exceeding Climate Model Projections,” Geophysical Research Letters, Vol. 39, No. 19, 2012, Article ID: L19504. doi:10.1029/2012GL053387
[34] T. Prowse, et al., “Effects of Changes in Arctic Lake and River Ice,” AMBIO, Vol. 40, No. 1, 2011, pp. 63-74. doi:10.1007/s13280-011-0217-6

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.