Assessment of the Spatial Uncertainty of Nitrates in the Aquifers of the Campania Plain (Italy)


We present a non-parametric hydro-geostatistical approach for mapping design nitrate hazard in groundwater. The approach is robust towards the uncertainty of the parametric models used to map groundwater pollution. In particular, probability kriging (PK) estimates the probability that the true value of a pollutant exceeds a set of threshold values using a binary response variable (probability indicator). Such soft description of the pollutant can mitigate the uncertainty in pollutant concentration mapping. PK was used for assessing nitrate migration hazard across the Campania Plain groundwater (Southern Italy) as exceeding typical critical values set to 25 and 50 mg.L-1. Cross-validation indicated that the PK is more suitable than ordinary kriging (OK), which yields large uncertainty in absolute values prediction of nitrate concentration. This means that spatial variability is critical for contaminant transport because critical contaminants concentration could be exceeded due to preferential flows allowing the pollutant to migrate rapidly through the caveats aquifer. Accordingly with PK application, about 250 km2 (40% of the total600 km2 of the Campania Plain) were classified as very sensitive areas (western zone) to maximum permissible concentration of nitrates (>50 mg.L-1). When the probability to exceed 25 mg.L-1 was considered, the contaminated surface increased to 70% of the total area.

Share and Cite:

N. Diodato, L. Esposito, G. Bellocchi, L. Vernacchia, F. Fiorillo and F. Guadagno, "Assessment of the Spatial Uncertainty of Nitrates in the Aquifers of the Campania Plain (Italy)," American Journal of Climate Change, Vol. 2 No. 2, 2013, pp. 128-137. doi: 10.4236/ajcc.2013.22013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Buchan and A. Key, “Pollution of Ground Water in Europe,” Bulletin of the World Health Organization, Vol. 14, No. 5-6, 1956, pp. 949-1006.
[2] T. Huang, Z. Pang and W. M. Edmunds, “Soil Profile Evolution Following Land-Use Change: Implications for Groundwater Quantity and Quality,” Hydrological Processes, Vol. 27, No. 8, 2012, pp. 1238-1252. doi:10.1002/hyp.9302
[3] A. Visser, I. Dubus, H. P. Broers, S. Brouyere, M. Korcz, P. Orban, P. Goderniaux, J. Batlle-Aguilar, N. Surdyk, N. Amraoui, H. Job, J. L. Pinault and M. Bierken, “Comparison of Methods for the Detection and Extrapolation of Trends in Groundwater Quality,” Journal of Environmental Monitoring, Vol. 11, No. 11, 2009, pp. 2030-2043. doi:10.1039/b905926a
[4] J. K. Bohlke, “Groundwater Recharge and Agricultural Contamination,” Hydrogeology Journal, Vol. 10, No. 1, 2002, pp. 153-179. doi:10.1007/s10040-001-0183-3
[5] M. de Wit, H. Behrendt, G. Bendoricchio, W. Bleuten and P. van Gaans, “The Contribution of Agriculture to Nutrient Pollution in Three European Rivers, with Reference to the European Nitrates Directive,” European Water Management Online, 2002.
[6] G. J. Kraft and W. Stites, “Nitrate Impacts on Groundwater from Irrigated-Vegetable Systems in a Humid NorthCentral US Sand Plain,” Agriculture, Ecosystems and Environment, Vol. 100, No. 1, 2003, pp. 63-74. doi:10.1016/S0167-8809(03)00172-5
[7] B. Nas and A. Berktay, “Groundwater Contamination by Nitrates in the City of Konya (Turkey): A GIS Perspective,” Journal of Environmental Management, Vol. 79, No. 1, 2006, pp. 30-37. doi:10.1016/j.jenvman.2005.05.010
[8] J. J. Schroder, D. Scholefield, F. Cabral andG. Hofman, “The Effects of Nutrient Losses from Agriculture on Ground and Surface Water Quality: The Position of Science in Developing Indicators for Regulation,” Environmental Science & Policy, Vol. 7, 2004, pp. 15-23. doi:10.1016/j.envsci.2003.10.006
[9] S. Chand, M. Ashif, M. Y. Zargar and B. M. Ayub, “Nitrate Pollution: A Menace to Human, Soil, Water and Plant,” Universal Journal of Environmental Research and Technology, Vol. 1, 2011, pp. 22-32.
[10] J. A. Vomocil, “Fertilizers: Best Management Practices to Control Nutrients,” Proceedings of the Northwest Nonpoint Source Pollution Conference, Olympia, 24-25 March 1987, pp. 88-97.
[11] G. R. Hallberg and D. R. Keeney, “Nitrate,” In: W. M. Alley, Ed., Regional Groundwater Quality, van Nostrand Reinhold, New York, 1993, pp. 297-322.
[12] I. Lord, S. G. Anthony and G. Goodlass, “Agricultural Nitrogen Balance and Water Quality in the UK,” Soil Use and Management, Vol. 18, No. 4, 2006, pp. 363-369. doi:10.1111/j.1475-2743.2002.tb00253.x
[13] C. D. Rail, “Groundwater Contamination: Sources, Control, and Preventive Measures,” Technomic, Lancaster, 1989.
[14] C. J. Johnson, P. A. Bonrud, T. L. Dosch, A. W. Kilness, K. A. Senger, D. C. Busch and M. R. Meyer, “Fatal Outcome of Methemoglobinemia in an Infant,” Journal of the American Medical Association, Vol. 257, No. 20, 1987, pp. 2796-2797. doi:10.1001/jama.1987.03390200136029
[15] S. M. Kharad, K. Srinivas Rao and G. S. Rao, “GIS Based Groundwater Assessment Model,” GIS@development, 1999.
[16] M. Butler, J. Wallace and M. Lowe, “Ground-Water Quality Classification Using GIS Contouring Methods for Cedar Valley, Iron County, Utah,” US Geological Survey Open-File Report 02-370, Workshop Proceedings of Digital Mapping Techniques, Salt Lake City, 19-22 May 2002.
[17] S. S. Asadi, P. Vuppala and M. A. Reddy, “Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V), India,” International Journal of Environmental Research and Public Health, Vol. 4, No. 1, 2007, pp. 45-52. doi:10.3390/ijerph2007010008
[18] P. Balakrishnan, A. Saleem and N. D. Mallikarjun, “Groundwater Quality Mapping Using Geographic Information System (GIS): A Case Study of Gulbarga City, Karnataka,” India African Journal of Environmental Science and Technology, Vol. 5, No. 12, 2011, pp. 10691084.
[19] R. A. Carlson and J. L. Osiensky, “Geostatistical Analysis and Simulation of Nonpoint Source Groundwater Nitrate Contamination: A Case Study,” Environmental Geoscience, Vol. 5, No. 4, 1998, pp. 177-186.
[20] C. W. Liu, C. S. Jang and C. M. Liao, “Evaluation of Arsenic Contamination Potential Using Indicator Kriging in the Yun-Lin Aquifer (Taiwan),” Science of the Total Environment, Vol. 321, No. 1-3, 2004, pp. 173-188. doi:10.1016/j.scitotenv.2003.09.002
[21] N. Diodato and M. Ceccarelli, “Computational Uncertainty Analysis of Groundwater Recharge in Catchment,” Ecological Informatics, Vol. 1, No. 4, 2006, pp. 377-389. doi:10.1016/j.ecoinf.2006.02.003
[22] C. Piccini, A. Marchetti, R. Farina and R. Francaviglia, “Application of Indicator Kriging to Evaluate the Probability of Exceeding Nitrate Contamination Thresholds,” International Journal of Environmental Research, Vol. 6, No. 4, 2012, pp. 853-862.
[23] L. Esposito and V. Piscopo, “Groundwater Flow Evolution in the Circum-Vesuvian Plain (Italy),” Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham, 21-27 September 1997, pp. 309-314.
[24] F. Celico, L. Esposito and V. Piscopo, “Limiti di Applicabilità Delle Carte Della Vulnerabilità All’Inquinamento Degli Acquiferi Nella Previsione Dello Stato di Contaminazione Antropica Delle Acque Sotterranee,” Geologica Romana, Vol. 33, 1997, pp. 65-72 (in Italian).
[25] A. Corniello and D. Ducci, “Origine Dell’Inquinamento da Nitrati Nelle Falde Dell’Area di Acerra (Piana Campana),” Engineering Hydro Environmental Geology, Vol. 12, 2009, pp. 157-166 (in Italian).
[26] M. J. Fishman and L. C. Friedman, “Methods for Determination of Inorganic Substances in Water and Fluvial Sediments,” US Geological Survey Techniques of WaterResources Investigations, Book 5, Chapter A1, 1989.
[27] M. J. Fishman, “Methods of Analysis by the US Geological Survey National Water Quality Laboratory-Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments,” US Geological Survey Open-File Report, 1993, pp. 93-125.
[28] A. G. Journel and C. J. Huijbregts, “Mining Geostatistics,” Academic Press, New York, 1978.
[29] J. Sullivan, “Conditional Recovery Estimation through Probability Kriging-Theory and Practice,” In: G. M. Verly, M. David, A. G. Journel and A. Marechal, Eds., Geostatistics for Natural Resources Characterisation, Part 1., Reidel, Dordrecht, 1984, pp. 365-384. doi:10.1007/978-94-009-3699-7_22
[30] M. E. Hohn, “Petroleum and Geostatistics,” Kluwer Academic Publishers, Dordrecht, 1999.
[31] P. Goovaerts, “Geostatistics for Natural Resources Evaluation,” Oxford University Press, New York, 1997.
[32] C. V. Deutsch and A. G. Journel, “GSLIB Geostatistical Software Library and User’s Guide,” Oxford University Press, New York, 1992.
[33] K. Johnston, J. M. Ver Hoef, K. Krivoruchko and N. Lucas, “Using ArcGis Geostatistical Analyst,” ESRI, 2001.
[34] P. Balakrishnan, A. Saleem and N. D. Mallikarjun, “Groundwater Quality Mapping Using Geographic Information System (GIS): A Case Study of Gulbarga City, Karnataka, India,” African Journal of Environmental Science and Technology, Vol. 5, No. 12, 2011, pp. 10691084.
[35] R. Carlson and J. Osiensky, “Geostatistical Analysis and Simulation of Nonpoint Source Groundwater Nitrate Contamination: A Case Study,” Environmental Geosciences, Vol. 5, No. 4, 1998, pp. 177-186. doi:10.1046/j.1526-0984.1998.08025.x
[36] E. H. Isaaks and R. M. Srivastava, “An Introduction to Applied Geostatistics,” Oxford University Press, New York, 1989.
[37] E. Capri, M. Civita, A. Corniello, G. Cusimano, M. De Maio, D. Ducci, G. Fait, A. Fiorucci, S. Hauser, A. Pisciotta, G. Pranzini, M. Trevisan, A. Delgado Huertas, F. Ferrari, R. Frullini, B. Nisi, M. Offi, O. Vaselli and M. Vassallo, “Assessment of Nitrate Contamination Risk: The Italian Experience,” Journal of Geochemical Exploration, Vol. 102, No. 2, 2009, pp. 71-86. doi:10.1016/j.gexplo.2009.02.006
[38] G. Onorati and T. Di Meo, “Lo Stato Delle Acque Sotterranee in Campania e la Diffusione dei Nitrati. La Direttiva Nitrati, Un’Opportunità per L’Agricoltura Campana,” ARPAC, Convegno Provinciale Avellino, 21 giugno 2006 (in Italian).

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.