Ligand-induced dimerization of syndecan-3 at the cell surface


Syndecan-3 (N-syndecan) is a transmembrane heparan sulfate proteoglycan abundantly expressed in developing brain. In addition to acting as a coreceptor, syndecan-3 acts as a signaling receptor upon binding of its ligand HB-GAM (heparin-binding growth-associated molecule; pleiotrophin), which activates the cortactin-src kinase signaling pathway. This leads to rapid neurite extension in neuronal cells, which makes syndecan-3 as an interesting transmembrane receptor in neuronal development and regeneration. However, little is known about the signaling mechanism of syndecan-3. Here we have analyzed formation of ligand-N-syndecan signaling complexes at the cell surface using fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET). We show that ligand binding leads to dimerization of syndecan-3 at the cell surface. The dimerized syndecan-3 colocalizes with actin in the filopodia of cells. Several amino acid residues (K383, G392 and G396) in the transmembrane domain are shown to be important for the ligand-induced dimerization, whereas the cytosolic domain is not required for the dimerization.

Share and Cite:

Kulesskiy, E. , Tumova, S. and Rauvala, H. (2013) Ligand-induced dimerization of syndecan-3 at the cell surface. Advances in Bioscience and Biotechnology, 4, 36-44. doi: 10.4236/abb.2013.46A006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Carey, D.J., Evans, D.M., Stahl, R.C., Asundi, V.K., Conner, K.J., Garbes, P. and Cizmeci-Smith, G. (1992) Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. The Journal of Cell Biology, 117, 191-201. doi:10.1083/jcb.117.1.191
[2] Dealy, C.N., Seghatoleslami, M.R., Ferrari, D. and Kosher, R.A. (1997) FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3. Developmental Biology, 184, 343-350. doi:10.1006/dbio.1997.8525
[3] Hienola, A., Tumova, S., Kulesskiy, E. and Rauvala, H. (2006) N-syndecan deficiency impairs neural migration in brain. The Journal of Cell Biology, 174, 569-580. doi:10.1083/jcb.200602043
[4] Bespalov, M.M., Sidorova, Y.A., Tumova, S., AhonenBishopp, A., Magalhães, A.C., Kulesskiy, E., Paveliev, M., Rivera, C., Rauvala, H. and Saarma, M. (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. The Journal of Cell Biology, 192, 153-169. doi:10.1083/jcb.201009136
[5] Rauvala, H. (1989) An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. The EMBO Journal, 8, 2933-2941.
[6] Li, Y.S., Milner, P.G., Chauhan, A.K., Watson, M.A., Hoffman, R.M., Kodner, C.M., Milbrandt, J. and Deuel, T.F. (1990) Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science, 250, 1690-1694. doi:10.1126/science.2270483
[7] Kinnunen, T., Kaksonen, M., Saarinen, J., Kalkkinen, N., Peng, H.B. and Rauvala, H. (1998) Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. The Journal of Biological Chemistry, 273, 10702-10708. doi:10.1074/jbc.273.17.10702
[8] Pacifici, M., Shimo, T., Gentili, C., Kirsch, T., Freeman, T.A., Enomoto-Iwamoto, M., Iwamoto, M. and Koyama, E. (2005) Syndecan-3: A cell-surface heparan sulfate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. Journal of Bone and Mineral Metabolism, 23, 191-199. doi:10.1007/s00774-004-0584-1
[9] Reizes, O., Lincecum, J., Wang, Z., Goldberger, O., Huang, L., Kaksonen, M., Ahima, R., Hinkes, M.T., Barsh, G.S., Rauvala, H. and Bernfield, M. (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell, 106, 105-116. doi:10.1016/S0092-8674(01)00415-9
[10] Lauri, S.E., Kaukinen, S., Kinnunen, T., Ylinen, A., Imai, S., Kaila, K., Taira, T. and Rauvala, H. (1999) Reg1ulatory role and molecular interactions of a cellsurface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. The Journal of Neuroscience, 19, 1226-1235.
[11] Kaksonen, M., Pavlov, I., Võikar, V., Lauri, S.E., Hienola, A., Riekki, R., Lakso, M., Taira, T. and Rauvala, H. (2002) Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Molecular and Cellular Neuroscience, 21, 158-172. doi:10.1006/mcne.2002.1167
[12] Heldin, C.H. (1995) Dimerization of cell surface recaptors in signal transduction. Cell, 80, 213-223. doi:10.1016/0092-8674(95)90404-2
[13] Schlessinger, J. (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 110, 669-672. doi:10.1016/S0092-8674(02)00966-2
[14] Lemmon, M.A. and Schlessinger, J. (1994) Regulation of signal transduction and signal diversity by receptor oligomerization. Trends in Biochemical Sciences, 19, 459463. doi:10.1016/0968-0004(94)90130-9
[15] Weiss, A. and Schlessinger, J. (1998) Switching signals on or off by receptor dimerization. Cell, 94, 277-280. doi:10.1016/S0092-8674(00)81469-5
[16] Choi, S., Lee, E., Kwon, S., Park, H., Yi, J.Y., Kim, S., Han, I.O., Yun, Y. and Oh, E.S. (2005) Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. The Journal of Cell Biology, 280, 42573-42579. doi:10.1074/jbc.M509238200
[17] Asundi, V.K. and Carey, D.J. (1995) Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. The Journal of Biological Chemistry, 270, 26404-26410. doi:10.1074/jbc.270.44.26404
[18] Carey, D.J., Stahl, R.C., Tucker, B., Bendt, K.A. and Cizmeci-Smith, G. (1994) Aggregation-induced association of syndecan-1 with microfilaments mediated by the cytoplasmic domain. Experimental Cell Research, 214, 12-21. doi:10.1006/excr.1994.1228
[19] Lax, I., Mitra, A.K., Ravera, C., Hurwitz, D.R., Rubinstein, M., Ullrich, A., Stroud, R.M. and Schlessinger, J. (1991) Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. The Journal of Biological Chemistry, 266, 13828-13833.
[20] Sorkin, A., McClure, M., Huang, F. and Carter, R. (2000) Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Current Biology, 10, 1395-1398. doi:10.1016/S0960-9822(00)00785-5
[21] Youvan, D.C., Silva, C.M., Bylina, E.J., Coleman, W.J., Dilworth, M.R. and Yang, M.M. (1997) Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology et Alia, 3, 1-18.
[22] Hamdan, F.F., Audet, M., Garneau, P., Pelletier, J. and Bouvier, M. (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. Journal of Biomolecular Screening, 10, 463-475. doi:10.1177/1087057105275344
[23] Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M. and Bouvier, M. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proceedings of the National Academy of Sciences of the United States of America, 97, 3684-3689.
[24] Heding, A. (2004) Use of the BRET 7TM receptor/ beta-arrestin assay in drug discovery and screening. Expert Review of Molecular Diagnostics, 4, 403-411. doi:10.1586/14737159.4.3.403
[25] Blanquart, C., Gonzalez-Yanes, C. and Issad, T. (2006) Monitoring the activation state of insulin/insulin-like growth factor-1 hybrid receptors using bioluminescence resonance energy transfer. Molecular Pharmacology, 70, 1802-1811. doi:10.1124/mol.106.026989
[26] Barnett, M.W., Fisher, C.E., Perona-Wright, G. and Davies, J.A. (2002) Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. Journal of Cell Science, 115, 44954503. doi:10.1242/jcs.00114
[27] Sariola, H. and Saarma, M. (2003) Novel functions and signalling pathways for GDNF. Journal of Cell Science, 116, 3855-3862. doi:10.1242/jcs.00786
[28] Asundi, V.K., Erdman, R., Stahl, R.C. and Carey, D.J. (2003) Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. Journal of Neuroscience Research, 73, 593-602. doi:10.1002/jnr.10699
[29] Berndt, C., Casaroli-Marano, R.P., Vilaró, S. and Reina, M. (2001) Cloning and characterization of human syndecan-3. Journal of Cellular Biochemistry, 82, 246-259. doi:10.1002/jcb.1119
[30] Carey, D.J., Stahl, R.C., Cizmeci-Smith, G. and Asundi, V.K. (1994) Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading. The Journal of Cell Biology, 124, 161-170. doi:10.1083/jcb.124.1.161
[31] Bass, M.D. and Humphries, M.J. (2002) Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochemical Journal, 368, 1-15. doi:10.1042/BJ20021228
[32] Filla, M.S., Woods, A., Kaufman, P.L. and Peters, D.M. (2006) Beta1 and beta3 integrins cooperate to induce syndecan-4-containing cross-linked actin networks in human trabecular meshwork cells. Investigative Ophthalmology & Visual Science, 47, 1956-1967. doi:10.1167/iovs.05-0626
[33] Choi, Y., Kim, S., Lee, J., Ko, S.G., Lee, W., Han, I.O., Woods. A. and Oh, E.S. (2008) The oligomeric status of syndecan-4 regulates syndecan-4 interaction with alpha-actinin. European Journal of Cell Biology, 87, 807815. doi:10.1016/j.ejcb.2008.04.005

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.