Modeling of Atmospheric Gravity Effects for High-Precision Observations

DOI: 10.4236/ijg.2013.44061   PDF   HTML     4,057 Downloads   5,981 Views   Citations


Temporal variations of atmospheric density distribution induce changes in the gravitational air mass attraction at a specific observation site. Additionally, the load of the atmospheric masses deforms the Earths crust and the sea surface. Variations in the local gravity acceleration and atmospheric pressure are known to be corrected with an admittance of about 3 nm/s2 per hPa as a standard factor, which is in accordance with the IAG Resolution No. 9, 1983. A more accurate admittance factor for a gravity station is varying with time and depends on the total global mass distribution within the atmosphere. The Institut für Erdmessung (IfE) performed absolute gravity observations in the Fennoscandian land uplift area nearly every year from 2003 to 2008. The objective is to ensure a reduction with 3 nm/s2 accuracy. Therefore, atmospheric gravity changes are modeled using globally distributed ECMWF data. The attraction effect from the local zone around the gravity station is calculated with ECMWF 3D weather data describing different pressure levels up to a height of 50 km. To model the regional and global attraction, and all deformation components the Greens functions method and surface ECMWF 2D weather data are used. For the annually performed absolute gravimetry determinations, this approach improved the reductions by 8 nm/s2 (-19 nm/s2 to +4 nm/s2). The gravity modeling was verified using superconducting gravimeter data at station Membach inBelgiumimproving the residuals by about 15%.

Share and Cite:

O. Gitlein, L. Timmen and J. Müller, "Modeling of Atmospheric Gravity Effects for High-Precision Observations," International Journal of Geosciences, Vol. 4 No. 4, 2013, pp. 663-671. doi: 10.4236/ijg.2013.44061.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Timmen, O. Gitlein, V. Klemann and D. Wolf, “Observing Gravity Change in Fennoscandian Uplift Area with the Hannover Absolute Gravimeter, Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism and Climate Change,” Pure and Applied Geophysics, Vol. 169, No. 8, 2012, pp. 1331-1342. doi:10.1007/s00024-011-0397-9
[2] O. Gitlein, L. Timmen, J. Müller, H. Denker, J. Makinen, M. Bilker-Koivula, B. Pettersen, D. Lysaker, J. Svendsen, H. Wilmes, R. Falk, A. Reinhold, W. Hoppe, H.-G. Scherneck, B. Engen, O. Omang, A. Engfeldt, M. Lilje, G. Strykowski and R. Forsberg, “Observing Absolute Gravity Acceleration in the Fennoscandian Land Uplift Area,” Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2007), International Symposium, Elektropribor, St. Petersburg, 20-23 August 2007, pp. 175-180.
[3] J. Agren and R. Svensson, “Land Uplift Model and System Definition for the RH 2000 Adjustment of the Baltic Levelling Ring,” The 15th General Meeting of the Nordic Geodetic Commission, Copenhagen, 29 May-2 June 2006.
[4] M. Ekman and J. Makinen, “Recent Postglacial Rebound, Gravity Change and Mantle Flow in Fennoscandia,” Geophysical Journal International, Vol. 126, No. 1, 1996, pp. 229-234. doi:10.1111/j.1365-246X.1996.tb05281.x
[5] O. Gitlein, “Absolutgravimetrische Bestimmung der Fennoskandischen Landhebung mit dem FG5-220,” PhD Thesis, Wissenschaftliche Arbeiten der Fachrichtug Geodasie und Geoinformatik der Leibniz Universitat Hannover, 2009.
[6] O. Gitlein and L. Timmen, “Atmospheric Mass Flow Reduction for Terrestrial Absolute Gravimetry in the Fennoscandian Land Uplift Network,” Dynamic Planet, IAG Symposium, Cairns, 22-26 August 2005, pp. 461-466.
[7] R. J. Warburton and J. M. Goodkind, “The Influence of Barometricpressure Variations on Gravity,” Geophysical Journal International, Vol. 48, No. 3, 1977, pp. 281-292.
[8] T. M. van Dam and J. M. Wahr, “Displacements of the Earth’s Surface Due to Atmospheric Loading: Effects on Gravity and Baseline Measurements,” Journal of Geophysical Research, Vol. 92, No. B2, 1987, pp. 1281-1286. doi:10.1029/JB092iB02p01281
[9] T. M. van Dam, G. Blewitt and M. B. Heflin, “Atmospheric Pressure Loading Effects on Global Positioning System Coordinate Determinations,” Journal of Geophysical Research, Vol. 99, No. B12, 1994, pp. 23939-23950. doi:10.1029/94JB02122
[10] H.-P. Sun, “Static Deformation and Gravity Changes at the Earth’s Surface due to the Atmospherical Pressure,” PhD Thesis, Catholic University of Louvain, Belgium, 1995.
[11] C. Kroner, “Reduktion von Luftdrucke_ekten in Zeitabhangigen Schwerebeobachtungen,” PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultat, Technische Universitat Clausthal, 1997.
[12] J.-P. Boy, P. Gegout and J. Hinderer, “Reduction of Surface Gravity Data from Global Atmospheric Pressure Loading,” Geophysical Journal International, Vol. 149, No. 2, 2002, pp. 534-545. doi:10.1046/j.1365-246X.2002.01667.x
[13] L. Petrov and J.-P. Boy, “Study of the Atmospheric Pressure Loading Signal in Very Long Baseline Interferometry Observations,” Journal of Geophysical Research, Vol. 109, 2004, Article ID: B03405. doi:10.1029/2003JB002500
[14] D. Crossley, J. Hinderer and J.-P. Boy, “Regional Gravity Variations in Europe from Superconducting Gravimeters,” Journal of Geodynamics, Vol. 38, No. 3-5, 2004, pp. 325-342. doi:10.1016/j.jog.2004.07.014
[15] D. Bock, R. Noomen and H.-G. Scherneck, “Atmospheric Pressure Loading Displacement of SLR Stations,” Journal of Geodynamics, Vol. 39, No. 3, 2005, pp. 247-266. doi:10.1016/j.jog.2004.11.004
[16] P. Tregoning and T. M. van Dam, “Atmospheric Pressure Loading Corrections Applied to GPS Data at the Observation Level,” Geophysical Research Letters, Vol. 32, 2005, Article ID: L22310. doi:10.1029/2005GL024104
[17] T. Klügel and H. Wziontek, “Correcting Gravimeters and Tiltmeters for Atmospheric Mass Attraction Using Operational Weather Models,” Journal of Geodynamics, Vol. 48, No. 3-5, 2009, pp. 204-210. doi:10.1016/j.jog.2009.09.010
[18] M. Abe, C. Kroner, J. Neumeyer and X. Chen, “Assessment of Atmospheric Reductions for Terrestrial Gravity Observations,” Bulletin d’Information des Marées Terrestres, Vol. 146, 2010, pp. 11817-11838.
[19] H. Hackel, “Meteorologie,” Eugen Ulmer KG, Stuttgart, 2005.
[20] I. M. Longman, “A Green’s Function for Determining the Deformation of the Earth under Surface Mass Loads: 1. Theory,” Journal of Geophysical Research, Vol. 67, No. 2, 1962, pp. 845-850. doi:10.1029/JZ067i002p00845
[21] W. E. Farrell, “Deformation of the Earth by Surface Loads,” Reviews of Geophysics and Space Physics, Vol. 10, No. 3, 1972, pp. 761-797.
[22] J. B. Merriam, “Atmospheric Pressure and Gravity,” Geophysical Journal International, Vol. 109, No. 3, 1992, pp. 488-500. doi:10.1029/RG010i003p00761
[23] J. Y. Guo, Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu and J. S. Ning, “Green’s Function of the Deformation of the Earth as a Result of Atmospheric Loading,” Geophysical Journal International, Vol. 159, No. 1, 2004, pp. 53-68. doi:10.1111/j.1365-246X.2004.02410.x
[24] R. S. Spratt, “Modelling the Effect of Atmospheric Pressure Variations on Gravity,” Geophysical Journal International, Vol. 71, 1982, pp. 173-186.
[25] S. R. Dickman, “Theoretical Investigation of the Oceanic Inverted Barometer Response,” Journal of Geophysical Research, Vol. 93, No. B12, 1988, pp. 14941-14946. doi:10.1029/JB093iB12p14941
[26] C. Wunsch and D. Stammer, “Atmospheric Loading and the Oceanic ‘Inverted Barometer’ Effect,” Reviews of Geophysics, Vol. 35, No. 1, 1997, pp. 79-107. doi:10.1029/96RG03037
[27] T. M. van Dam and J. M. Wahr, “The Atmopsheric Load Response of the Ocean Determined Using Geosat Al-Timeter data,” Geophysical Journal International, Vol. 113, No. 1, 1993, pp. 1-16.
[28] W. Rabbel and J. Zschau, “Static Deformation and Gravity Changes at the Earth’s Surface Due to Atmospheric Loading,” Journal of Geophysics, Vol. 56, 1985, pp. 81-99.
[29] H.-P. Sun, B. Ducarme and V. Dehant, “Effect of the Atmospheric Pressure on Surface Displacements,” Journal of Geodesy, Vol. 70, No. 3, 1995, pp. 131-139. doi:10.1007/BF00943688
[30] J. Johansson, J. Davis, H.-G. Scherneck, G. Milne, M. Vermeer, J. Mitrovica, R. Bennett, B. Jonsson, G. Elgered, P. Elósegui, H. Koivula, M. Poutanen, B. Ronnang and I. Shapiro, “Continuous GPS Measurements of Postglacial Adjustment in Fennoscandia, 1. Geodetic Results,” Journal of Geophysical Research, Vol. 107, No. B8, 2002, pp. 1-27. doi:10.1029/2001JB000400
[31] H.-G. Scherneck, J. Johansson, H. Koivula, T. van Dam and J. Davis, “Vertical Crustal Motion Observed in the BIFROST Project,” Journal of Geodynamics, Vol. 35, No. 4-5, 2003, pp. 425-441. doi:10.1016/S0264-3707(03)00005-X
[32] IGC, “International Absolute Gravity Basestation Network (IAGBN), Absolute Gravity Observations, Data Processing, Standards & Station Documentation (Int. Grav. Com.—WGII: World Gravity Standards),” Bureau Gravimetrique International, Bulletin d’Information, Vol. 63, 1988, pp. 51-57.
[33] D. Simon, “Modelling of the Gravimetric Effects Induced by Vertical Air Mass Shifts,” In: Mitteilungen des Bundesamtes für Kartographie und Geodasie, Verlag des Bundesamtes für Kartographie und Geodasie, Frankfurt am Main, 2003.
[34] J. Neumeyer, J. Hagedoorn, J. Leitloff and T. Schmidt, “Gravity Reduction with Three-Dimensional Atmospheric Pressure Data for Precise Ground Gravity Measurements,” Journal of Geodynamics, Vol. 38, 2004, pp. 437-450. doi:10.1016/j.jog.2004.07.006
[35] M. Talwani and M. Ewing, “Rapid Computation of Gravitational Attraction of Three-Dimensional Bodies of Arbitrary Shape,” Geophysics, Vol. 25, No. 1, 1960, pp. 203-225. doi:10.1190/1.1438687
[36] K. Jung, “Schwerkraftverfahren in der Angewandten Geophysik,” Geest & Portig K.-G., Leipzig, 1961.
[37] D. Nagy, “The Gravitational Attraction of a Right Rectangular Prism,” Geophysics, Vol. XXXI, No. 2, 1966, pp. 362-371. doi:10.1190/1.1439779
[38] H. Buitkamp, “Modelle für Geodatische Anwendungen der Tragheitsnavigation mit Besonderer Berücksichtigung von Schachtvermessungen,” Dissertation, Vero_entlichungen der Deutschen Geodatischen Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C, Nr. 306, Rheinische Friedrich-Wilhelms-Universitat zu Bonn, München, 1960.
[39] D. Nagy, G. Papp and J. Benedek, “The Gravitational Potential and Its Derivatives for the Prism,” Journal of Geodesy, Vol. 74, No. 7, 2000, pp. 552-560. doi:10.1007/s001900000116
[40] H. Kraus, “Die Atmosphare der Erde: Eine Einführung in die Meteorologie,” Springer, Berlin, 2004.
[41] J. M. Goodkind, “The Superconducting Gravimeter,” Review of Scientific Instruments, Vol. 70, No. 11, 1999, pp. 4131-4152. doi:10.1063/1.1150092
[42] O. Francis, M. Van Camp, T. van Dam, R. Warnant and M. Hendrickx, “Indication of the Uplift of the Ardenne in Long Term Gravity Variations in Membach (Belgium),” Geophysical Journal International, Vol. 158, No. 1, 2004, pp. 346-352.
[43] M. Van Camp, M. Vanclooster, O. Crommen, T. Petermans, K. Verbeek, B. Meurers, T. M. van Dam and A. Dassargues, “Hydrogeological Investigations at the Membach Station, Belgium, and Application to Correct Long Periodic Gravity Variations,” Journal of Geophysical Research, Vol. 111, 2006, Article ID: B10403. doi:10.1029/2006JB004405

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.