Share This Article:

Applying MILP for 27-Level CMLIs to Obtain Low THD Values over Wide Voltage Range

Abstract Full-Text HTML XML Download Download as PDF (Size:268KB) PP. 315-321
DOI: 10.4236/epe.2013.54032    2,674 Downloads   3,784 Views   Citations

ABSTRACT

The 27-level cascaded multilevel inverter (CMLI) is a popular CMLI, since it can produce an output voltage with nearly sinusoidal wave form and may be realized as a trinary asymmetric CMLI that consists of only three H-bridges. A new approach using a mixed integer linear programming (MILP) model is applied, that can determine the switching angles of this CMLI that minimize the values of any undesired harmonics. The model is applied first to determine the number of harmonics to be minimized to obtain least percentage total harmonic distortion (%THD) utilizing the 13 positive levels of the inverter. The obtained result is then included in the model and it is solved for different values of the output voltage. Single phase and three phase cases are investigated. The results show very low values of %THD and low order harmonics over wide voltage range till the 91st harmonic in both cases, which agree with the IEEE standards 519-1992 for voltage distortion limits till 161 kv.

Cite this paper

M. El-Bakry, "Applying MILP for 27-Level CMLIs to Obtain Low THD Values over Wide Voltage Range," Energy and Power Engineering, Vol. 5 No. 4, 2013, pp. 315-321. doi: 10.4236/epe.2013.54032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. N. Ben Nasr, A. Kebir and F. B. Ammar, “Cascaded H-Bridges Symmetrical 11-Level Optimization,” Proceedings of 14th International Middle East Power Systems Conference (MEPCON’2010), Cairo, 19-21 December 2010, pp. 465-470.
[2] F. Khoucha, M. S. Lagoam, A. Kheloui and M. E. Ben bouzid, “A Comparison of Symmetrical and Asymmetrical Three Phase H-Bridge MLI for DTC Induction Motor Drives,” IEEE Transactions on Energy Conversion, Vol. 26, No. 1, 2011, pp. 64-72. doi:10.1109/TEC.2010.2077296
[3] J.Song-Manguell, S. Mariethoz, N. Veenstra and A. Ruter, “A Generalized Design Principle of a Uniform Step Asymmetric Multilevel Converter for High Power Con version,” European Conferences on Power Electronics and Applications EPE’01, Graz, 27-29 August 2001, pp. 1-12.
[4] B. Sujanarko, M. Ashari and M. H. Parnoma, “Improved Voltage of Cascaded Inverters Using Sine Quantization Progression,” Indonesian Journal of Electrical Engineering, Vol. 8, No. 2, 2010, pp. 123-130.
[5] M. Rotello, G. Penailillo, J. Pereda and J. Dixon, “PWM Method to Eliminate Power Soueces in Nonredundant 27 Level Inverter for Machine Drive Applications,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 1, 2009, pp. 194-201. doi:10.1109/TIE.2008.927233
[6] K. Ramani and A. Krishnan, “New Hybrid 27 Level MLI Fed Induction Motor Drive,” International Journal of Recent Trends in Engineering, Vol. 12, No. 5, 2009.
[7] J. Dixon, J. Preda, C. Castillo and S. Bosch, “Asymmetrical Multilevel Inverters for Traction Drives Using Only One DC Supply,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 8, 2010, pp. 3736-3743. doi:10.1109/TVT.2010.2057268
[8] R. Seyezhai and B. L. Mathur, “Implementation and Control of Variable Frequency ISPWM Technique for an Asymmetric Multilevel Inverter,” European Journal of Scientific Research, Vol. 39, No.4, 2010, pp. 558-568.
[9] B. Sujanarko, M. Ashri, M. H. Parnomo and O. Penang sang, “Advanced Carrier Based PWM in Asymmetric Cascaded Multilevel Inverter,” International Journal of Electrical & Computer Sciences, Vol. 10, No. 6, 2010, pp. 47-51.
[10] J. I. Leon, S. Kouro, S. Vazquez, R. C. Portillo, L. G. Franqueb, J. M. Carrsco and J. R. Rodriguez, “Multidimentional Modulation Technique for Cascaded Multil revel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 2011, pp. 412-420. doi:10.1109/TIE.2010.2048833
[11] S. Mekhilef and M. N. A. Kadir, “Novel Vector Control Method for Three Stage Hybrid Multilevel Inverter,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, 2011, pp. 1339-1349. doi:10.1109/TIE.2010.2049716
[12] F. Carnielutti, H. Pinheiro and C. Rech, “Generalized Carrier-Based Modulation Strategy Cascaded Multilevel Converters Operating under Faulty Conditions,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 2012, pp. 679-689. doi:10.1109/TIE.2011.2157289
[13] R. Taleb and A. Meroufel, “Control of Asymmetric Multilevel Inverter Using Artificial Neural Network,” Journal of Electronics and Electrical Engineering, No. 8(96), 2009, pp. 93-98.
[14] D. Ahmadi, K. Zou, l. Cong, Huang, J. Wang, “A Universal Selective Harmonic Elimination Method for High Power Inverters,” IEEE Transactions on Power Electronics, Vol. 26, No. 10, 2011, pp. 2743-2752. doi:10.1109/TPEL.2011.2116042
[15] A. Kavousi, B. Vahidi, R. Salehi. M. Bakhshizadeh, N. Farokhnia and S. S. Fathi, “Application of the Bee Algorithm for Selective Harmonic Elimination Strategy in Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 27, No. 4, 2012, pp. 1689-1696.
[16] F. Filho, H. Z. Maia, T. H. A. Mateus, B. Ozpineci, L. M. Tolbert and J. O. P. Pinto, “Adaptive Selective Harmonic Minimization Based on ANNs for Cascaded Multilevel Invetres with Varing DC Sources,” IEEE Transactions on Power Electronics, Vol. 60, No. 5, 2013, pp. 1955-1962.
[17] J. Napoles, A. J. Watsen, J. J. Padilla, J. J. Leon, L. J. Franquelo, P. W. Wheeler and M. A. Aguirre, “Selective Harmonic Mitigation Technique for Cascaded H-Bridge Converters with Nonequal DC Line Voltages,” IEEE Transactions on Industrial Electronics, Vol. 60. No. 5, 2013, pp. 1963-1971. doi:10.1109/TIE.2012.2192896
[18] J. Kumar, B. Das and P. Agarwal, “Harmonic Reduction Technique for a Cascaded Multilevel Inverter,” International Journal of Recent Trends in Engineering, Vol. 1, No. 3, 2009, pp. 181-185.
[19] N. Yousefpoor, S. H. Fathi, N. Farokhnia and H. A. Abyaneh, “Total Harmonic Distortion Minimization Applied Directly on the Line-to-Line Voltage of Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, 2012, pp. 373-380. doi:10.1109/TIE.2011.2143373
[20] M. El-Bakry, “Using Linear Programming Models for Minimizing Harmonics Values in Cascaded Multilevel Inverters,” Proceedings of 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM’2010), Montereal, 6-9 July 2010, pp. 696-702.
[21] M. El-Bakry, “Selective Harmonic Minimization for Multilevel Inverters,” Proceedings of 2nd International Conference on Computer and Electrical Engineering, (IC CEE), Dubai, 2009, pp. 341-346.
[22] D. R. Anderson, D. J. Sweeny and T. A. Williams, “Introduction to Management Science, Quantitative Approach to Decision Making,” Chapter 8, Integer Linear Programming, West Publishing Co., USA, 2002.
[23] M. El-Bakry, “Minimizing Harmonics Values in Non Uniform Step Asymmetric CMLIs,” International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 10, 2012, pp.5-11.
[24] Lindo Systems Inc., “Optimization Modeling with LINGO,” 2004. www.lindo.com
[25] S. Sheklowat and B. Brockway, “The Application-Specific Power Semi-Conductor,” Fairchild Semiconductor Inc., San Jose, 2009.
[26] IEEE Standard 519-1992, “Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” IEEE, 1993.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.