Reclaiming Biologically Pretreated Greywater for Reuse by Photocatalytic Oxidation: Qualitative Study on the Removal of Trace Organics

Abstract

This study was carried out for gathering qualitative information about the potential of photocatalytic oxidation for the removal of trace organics (analysed by gas chromatography coupled to mass spectrometry, GC/MS) from biologically pretreated greywater to make it suitable for high quality reuse applications like groundwater recharge. Additionally, fractions of bulk organics (humic substances, building blocks, and low molecular weight organic acids) were quantified by liquid chromatography with organic carbon detection. Biologically pretreated greywater was subjected to photocatalytic oxidation in open stirred vessel reactors with UV lamps positioned over the reactors. UV doses of 0, 5, and 15 Wh·L-1 and TiO2 P25 photocatalyst concentrations of 1, 5, 10, and 20 g·L-1 were investigated. Photocatalysis experiments with a 15 Wh·L-1 UV dose were also conducted in the presence of 1 g·L-1 powdered activated carbon. Subsequent to mere contact of the photocatalyst to biologically pretreated greywater without UV, GC/MS did not indicate a substantial removal of trace organics, while humic substances were increasingly adsorbed by increasing photocatalyst concentration. A UV dose of 15 Wh·L-1 and TiO2 concentrations > 5 g·L-1 were favorable conditions for photocatalytic oxidation resulting in the removal of most of the trace organics, especially chlorinated phosphate flame retardants. Also humic substances were efficiently removed under these conditions. Photocatalytic oxidation is thus a promising process for advanced greywater treatment prior to groundwater recharge. Addition of powdered activated carbon did not improve trace and bulk organics removal by photocatalysis with a UV dose of 15 Wh·L-1 and with photocatalyst concentrations > 5 g·L-1.

Share and Cite:

H. Gulyas, C. Jorge, M. Reich and R. Otterpohl, "Reclaiming Biologically Pretreated Greywater for Reuse by Photocatalytic Oxidation: Qualitative Study on the Removal of Trace Organics," Journal of Water Resource and Protection, Vol. 5 No. 6, 2013, pp. 568-584. doi: 10.4236/jwarp.2013.56058.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Eriksson, E. Donner and A. Ledin, “Presence of Selected Priority and Personal Care Substances in an Onsite Bathroom Greywater Treatment Facility,” Water Science and Technology, Vol. 62, No. 12, 2010, pp. 2889-2898. doi:10.2166/wst.2010.988
[2] Z. Li, H. Gulyas, M. Jahn, D. R. Gajurel and R. Otterpohl, “Greywater Treatment by Constructed Wetlands in COM- BINATIon with TiO2-Based Photocatalytic Oxidation for Suburban and Rural Areas without Sewer System,” Water Science and Technology, Vol. 48, No. 11, 2003, pp. 101- 106.
[3] E. Nolde, “Greywater Recycling Systems in Germany—Results, Experiences and Guidelines,” Water Science and Technology, Vol. 51, No. 10, 2005, pp. 203-210.
[4] M. Ernst and M. Jekel, “Advanced Treatment Combination for Groundwater Recharge of Municipal Wastewater by Nanofiltration and Ozonation,” Water Science and Technology, Vol. 40, No. 4-5, 1999, pp. 277-284. doi:10.1016/S0273-1223(99)00509-0
[5] California Department of Public Health, “Groundwater Recharge Reuse DRAFT Regulation,” Division of Drinking Water and Environmental Management, Sacramento, 2008. http://www.cdph.ca.gov/certlic/drinkingwater/Documents/Recharge/DraftRechargeReg2008.pdf
[6] W. Kuehn and B. Wricke, “Trinkwasser?auf?bereitung im Mitteldeutschen Raum unter Be?son?derer Berücksichtigung der Haloformbildung,” GWF Wasser/Abwasser, Vol. 136, No. 14, 1995, pp. S92-S98.
[7] E. Donner, E. Eriksson, D. M. Revitt, L. Scholes, H.-C. Lützhoft and A. Ledin, “Presence and Fate of Priority Substances in Domestic Greywater Treatment and Reuse Systems,” Science of the Total Environment, Vol. 408, No. 12, 2010, pp. 2444-2451. doi:10.1016/j.scitotenv.2010.02.033
[8] E. Eriksson, K. Auffarth, A. M. Eilersen, M. Henze and A. Ledin, “Household Chemicals and Personal Care Products as Sources for Xenobiotic Organic Compounds in Grey Wastewater,” Water SA, Vol. 29, No. 2, 2003, pp. 135-146. doi:10.4314/wsa.v29i2.4848
[9] H. Gulyas, M. Reich and R. Otterpohl, “Organic Micropollutants in Raw and Treated Greywater: A Preliminary Investigation,” Urban Water Journal, Vol. 8, No. 1, 2011, pp. 29-39. doi:10.1080/1573062X.2010.528435
[10] L. Hernandez Leal, “Removal of Micropollutants from Greywater. Combining Biological and Physical/Chemical Processes,” Ph.D. Dissertation, Wageningen University, Wageningen, 2010.
[11] B. Levine, K. Reich, P. Sheilds, I. H. Suffet and V. Lazarova, “Water Quality Assessment for Indirect Potable Reuse: A New Methodology for Controlling Trace Organic Compounds at the West Basin Water Recycling Plant (California, USA),” Water Science and Technology, Vol. 43, No. 10, 2001, pp. 249-257.
[12] L. D. Nghiem, J. McCutcheon, A. I. Schaferand M. Elimelech, “The Role of Endocrine Disrupters in Water Recycling: Risk or Mania?” Water Science and Technology, Vol. 50, No. 2, 2004, pp. 215-220.
[13] H. Ozaki, N. Ikejima, Y. Shimizu, K. Fukami, S. Taniguchi, R. Takanami, R. R. Giri and S. Matsui, “Rejection of Pharmaceuticals and Personal Care Products PPCPs) and Endocrine Disrupting Chemicals (EDCs) by Low Pressure Reverse Osmosis Membranes,” Water Science and Technology, Vol. 58, No. 1, 2008, pp. 73-81. doi:10.2166/wst.2008.607
[14] J. Radjenovic, M. Petrovic, F. Ventura and D. Barcelo, “Rejection of Pharmaceuticals in Nanofiltration and Reverse Osmosis Membrane Drinking Water Treatment,” Water Research, Vol. 42, No. 14, 2008, pp. 3601-3610. doi:10.1016/j.watres.2008.05.020
[15] Y. Poussade, A. Roux, T. Walker and V. Zavlanos, “Advanced Oxidation for Indirect Potable Reuse: A Practical Application in Australia,” Water Science and Technology, Vol. 60, No. 9, 2009, pp. 2419-2424. doi:10.2166/wst.2009.665
[16] L. Hernández-Leal, H. Temmink, G. Zeeman and C. J. N. Buisman, “Removal of Micropollutants from Aerobically Treated Grey Water via Ozone and Activated Carbon,” Water Research, Vol. 45, No. 9, 2011, pp. 2887-2896. doi:10.1016/j.watres.2011.03.009
[17] Y. Boyjoo, M. Ang and V. Pareek, “Photocatalytic Treatment of Shower Water Using a Pilot Scale Reactor,” International Journal of Photoenergy, 2012, Article ID 578916. http://www.hindawi.com/journals/ijp/2012/578916/
[18] M. Sanchez, M. J. Rivero and I. Orti, “Photocatalytic Oxidation of Grey Water over Titanium Dioxide Suspensions,” Desalination, Vol. 262, No. 1-3, 2010, pp. 141- 146. doi:10.1016/j.desal.2010.05.060
[19] A. Armanious, A. Ozkan, U. Sohmen and H. Gulyas, “Inorganic Greywater Matrix Impact on Photocatalytic Oxidation: Does Flocculation of TiO2 Nanoparticles Impair Process Efficiency?” Water Science and Technology, Vol. 63, No. 12, 2011, pp. 2808-2813. doi:10.2166/wst.2011.614
[20] H. Gulyas, H. B. Jain, A. L. Susanto, M. Malekpur, K. Harasiuk, I. Krawczyk, P. Choromanski and M. Furmanska, “Solar Photocatalytic Oxidation of Pretreated Wastewaters: Laboratory Scale Generation of Design Data for Technical-Scale Double-Skin Sheet Reactors,” Environmental Technology, Vol. 26, No. 5, 2005, pp. 501-514. doi:10.1080/09593332608618540
[21] R. J. Braham and A. T. Harris, “Review of Major Design and Scale-Up Considerations for Solar Photocatalytic Reactors,” Industrial and Engineering Chemistry Research, Vol. 48, No. 19, 2009, pp. 8890-8905. doi:10.1021/ie900859z
[22] H. Gulyas, P. Choromanski, N. Muelling and M. Furmanska, “Toward Chemical-Free Reclamation of Biologically Pretreated Greywater: Solar Photocatalytic Oxidation with Powdered Activated Carbon,” Journal of Cleaner Production, Vol. 17, No. 13, 2009, pp. 1223-1227. doi:10.1016/j.jclepro.2009.03.008
[23] M. Abert, “LC-OCD-OND Analysis of Sewage Treatment Steps,” DOC-Labor Dr. Huber, Analytical Services and LC-OCD Systems, Karlsruhe, 2008. http://www.doc-labor.de/Example_Report_WASTE.pdf
[24] S. Liu, M. Lim, R. Fabris, C. W. K. Chow, M. Drikas, G. Korshin and R. Amal, “Multi-Wavelength Spectroscopic and Chromatography Study on the Photocatalytic Oxidation of Natural Organic Matter,” Water Research, Vol. 44, No. 8, 2010, pp. 2525-2532. doi:10.1016/j.watres.2010.01.036
[25] L. A. Tercero Espinoza and F. H. Frimmel, “A Simple Simulation of the Degradation of Natural Organic Matter in Homogeneous and Heterogeneous Advanced Oxidation Processes,” Water Research, Vol. 43, No. 16, 2009, pp. 3902-3909. doi:10.1016/j.watres.2009.04.028
[26] C. S. Uyguner and M. Bekbolet, “A Comparative Study on the Photocatalytic Degradation of Humic Substances of Various Origins,” Desalination, Vol. 176, No. 1-3, 2006, pp. 167-176. doi:10.1016/j.desal.2004.11.006
[27] R. J. Bryant and A. M. McClung, “Volatile Profiles of Aromatic and Non-Aromatic Rice Cultivars Using SPME/ GC-MS,” Food Chemistry, Vol. 124, No. 2, 2011, pp. 501- 513. doi:10.1016/j.foodchem.2010.06.061
[28] J. Meng, Y. Fang, J. Gao, A. Zhang, J. Liu, Z. Guo, Z. Zhang and H. Li, “Changes in Aromatic Compounds of Cabernet Sauvignon Wines during Ageing in Stainless Steel Tanks,” African Journal of Biotechnology, Vol. 10, No. 55, 2011, pp. 11640-11647.
[29] Miljostyrelsen, “Afgivelse og Vurdering af Kemiske Stoffer fra Udvalgte Elektriske og Elektroniske Produkter—del 2,” Kortlagning af Kemiske Stoffer i Forbrugerprodukter nr. 66, Danish Ministry of the Environment, Copenhagen, 2005. http://www2.mst.dk/common/Udgivramme/Frame.asp?
http://www2.mst.dk/udgiv/publikationer/2005/87-7614-825-4/html/helepubl.htm
[30] J. E. N. Dolatabadi and S. Kashanian, “A Review on DNA Interaction with Synthetic Phenolic Food Additives,” Food Research International, Vol. 43, No. 5, 2010, pp. 1223-1230. doi:10.1016/j.foodres.2010.03.026
[31] BUND, “Rosen mit Pestiziden Belastet—Analyse des BUND,” Flyer of Bund für Umwelt- und Naturschutz Deutschland e.V., Berlin, 2012. http://www.bund.net/fileadmin/bundnet/publikationen/chemie/20120214_
chemie_rosen_pestizide_hintergrund.pdf
[32] O. Delhomme and M. Millet, “Azaarenes in Atmospheric Particulate Matter Samples of Three Different Urban Sites in East of France,” Atmospheric Environment, Vol. 47, 2012, pp. 541-545. doi:10.1016/j.atmosenv.2011.06.044
[33] J. Lenicek, M. Sekyra, K. Bednárkova, I. Benes and F. Sipek, “Fractionation and Chemical Analysis of Urban Air Particulate Extracts,” International Journal of Environmental Analytical Chemistry, Vol. 77, No. 4, 2000, pp. 269-288.
[34] D. L. Courson, C. D. Flemming, K. J. Kuhlmann, J. W. Lane, J. H. Grabau, C. R. Miller, J. M. Cline, B. J. Larcom and J. C. Lipscomb, “Smoke Production and Thermal Decomposition Products from Advanced Composite Materials,” In: D. E. Dodd, Ed., 1996 Toxic Hazards Research Annual Report, United States Air Force Armstrong Laboratory, Dayton, 1997, pp. 133-147.
[35] M. Meyer zu Reckendorf, “Identification of Phenyl-Substituted Polycyclic Aromatic Compounds in Ring Furnace Gases Using GC-MS and GC-AED,” Chromatographia, Vol. 45, No. 1, 1997, pp. 173-182. doi:10.1007/BF02505557
[36] A. G. Bubnov, V. I. Grinevich and O. N. Maslova, “Barrier-Discharge Plasma Treatment of Surface Water to Remove Organic Compounds,” Russian Journal of Applied Chemistry, Vol. 79, No. 6, 2006, pp. 934-940. doi:10.1134/S1070427206060139
[37] X. Liu, K. Ji and K. Choi, “Endocrine Disruption Potentials of Organophosphate Flame Retardants and Related Mechanisms in H295R and MVLN Cell Lines and in Zebrafish,” Aquatic Toxicology, Vol. 114, 2012, pp. 173-181. doi:10.1016/j.aquatox.2012.02.019
[38] W. FOllmann and J. Wober, “Investigation of Cytotoxic, Genotoxic, Mutagenic, and Estrogenic Effects of the Flame Retardants Tris-(2-chloroethyl)-phosphate (TCEP) and Tris-2-chloropropyl)-phosphate (TCPP) in Vitro,” Toxicology Letters, Vol. 161, No. 2, 2006, pp. 124-134. doi:10.1016/j.toxlet.2005.08.008
[39] WHO, “Flame Retardants: Tris(chloropropyl)?phosphate and Tris(2-chloroethyl)phosphate,” Environmental Health Criteria 209. World Health Organization, Geneva, 1998. http://whqlibdoc.who.int/ehc/WHO_EHC_209.pdf
[40] R. Chapin, D. Gulati and L. Barnes, “Tris(2-chloroethyl)phosphate,” Environmental Health Perspectives, Vol. 105, No. S1, 1997, pp. 365-366.
[41] C. Bergh, “Organophosphates and Phthalates in Air and Dust from Indoor Environments—Method Development and Applied Measurements,” Ph.D. Dissertation, Stock- holm University, Stockholm, 2011.
[42] T. Heberer, A. Mechlinski, B. Franck, A. Knappe, G. Massmann, A. Pekdeger and B. Fritz, “Field Studies on the Fate and Transport of Pharmaceutical Residues in Bank Filtration,” Ground Water Monitoring and Remediation, Vol. 24, No. 2, 2004, pp. 70-77. doi:10.1111/j.1745-6592.2004.tb00714.x
[43] G. Amy and J. Drewes, “Soil Aquifer Treatment (SAT) as a Natural and Sustainable Wastewater Reclamation/Reuse Technology: Fate of Wastewater Effluent Organic Matter (EfOM) and Trace Organic Compounds,” Environmental Monitoring and Assessment, Vol. 129, No. 1-3, 2007, pp. 19-26. doi:10.1007/s10661-006-9421-4
[44] B. V. Laws, E. R. V. Dickenson, T. A. Johnson, S. A. Snyder and J. E. Drewes, “Attenuation of Contaminants of Emerging Concern during Surface-Spreading Aquifer Re- charge,” Science of the Total Environment, Vol. 409, No. 6, 2011, pp. 1087-1094. doi:10.1016/j.scitotenv.2010.11.021
[45] T. Reemtsma, J. B. Quintana, R. Rodil, M. Garcia-Lopez and I. Rodriguez, “Organophosphorus Flame Retardants and Plasticizers in Water and Air. I. Occurrence and Fate,” Trends in Analytical Chemistry, Vol. 27, No. 9, 2008, pp. 727-737. doi:10.1016/j.trac.2008.07.002
[46] A. Marklund, B. Andersson and P. Haglund, “Organophosphorus Flame Retardants and Plasticizers in Swedish Sewage Treatment Plants,” Environmental Science and Technology, Vol. 39, No. 19, 2005, pp. 7423-7429. doi:10.1021/es051013l
[47] J. Meyer and K. Bester, “Organophosphate Flame Retardants and Plasticisers in Wastewater Treatment Plants,” Journal of Environmental Monitoring, Vol. 6, No. 7, 2004, pp. 599-605. doi:10.1039/b403206c
[48] C. Bergh, R. Torgrip, G. Emenius and C. Osttran, “Organophosphate and Phthalate Esters in Air and Settled Dust —A Multi-Location Indoor Study,” Indoor Air, Vol. 21, No. 1, 2011, pp. 67-76. doi:10.1111/j.1600-0668.2010.00684.x
[49] J. Proesch and W. Puchert, “Kontaminierte Textilien-Eine Ursache für die TCPP-Belastung Kommunaler Abwasser,” Vom Wasser, Vol. 100, 2003, pp. 1-8.
[50] R. Fall, T. Karl, A. Jordan and W. Lindinger, “Biogenic C5 VOCs: Release from Leaves after Freeze-Thaw Wounding and Occurrence in Air at a High Mountain Observatory,” Atmospheric Environment, Vol. 35, No. 22, 2001, pp. 3905-3916. doi:10.1016/S1352-2310(01)00141-8
[51] D. A. Chase, A. Karnjanapiboonwong, Y. Fang, G. P. Cobb, A. N. Morse and T. A. Anderson, “Occurrence of Synthetic Musk Fragrances in Effluent and Non-Effluent Impacted Environments,” Science of the Total Environment, Vol. 416, 2012, pp. 253-260. doi:10.1016/j.scitotenv.2011.11.067
[52] R. J. Weston, “Essential Oils from the Leaves of Three New Zealand Species of Pseudopanax (Araliaceae),” Zeitschrift für Naturforschung, Vol. 59c, 2004, pp. 39-42.
[53] H. J. Schafer and K. H. Baringhaus, “Enantioselective Synthesis of a Highly Functionalized Perhydroazulene,” Liebigs Annalen der Chemie, Vol. 1990, No. 4, 1990, pp. 355-360. doi:10.1002/jlac.199019900168
[54] L. Mansouri, L. Bousselmi and A. Ghrabi, “Degradation of Recalcitrant Organic Contaminants by Solar Photocatalysis,” Water Science and Technology, Vol. 55, No. 12, 2007, pp. 119-125.
[55] M. J. Benotti, B. D. Stanford, E. C. Wert and S. A. Snyder, “Evaluation of a Photocatalytic Reactor Membrane Pilot System for the Removal of Pharmaceuticals and Endocrine Disrupting Compounds from Water,” Water Research, Vol. 43, No. 6, 2009, pp. 1513-1522.
[56] J. P. Pocostales, M. M. Sein, W. Knolle, C. von Sonntag and T. C. Schmidt, “Degradation of Ozone-Refractory Organic Phosphates in Wastewater by Ozone and Ozone/ Hydogen Peroxide (Peroxone): The Role of Ozone Consumption by Dissolved Organic Matter,” Environmental Science & Technology, Vol. 44, No. 21, 2010, pp. 8248- 8253.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.