Share This Article:

Localisation Inverse Problem and Dirichlet-to-Neumann Operator for Absorbing Laplacian Transport

Abstract Full-Text HTML Download Download as PDF (Size:241KB) PP. 772-779
DOI: 10.4236/jmp.2013.46106    3,617 Downloads   4,889 Views   Citations
Author(s)    Leave a comment

ABSTRACT

We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Baydoun, "Localisation Inverse Problem and Dirichlet-to-Neumann Operator for Absorbing Laplacian Transport," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 772-779. doi: 10.4236/jmp.2013.46106.

References

[1] J. Lee and G. Uhlmann, Communications on Pure and Applied Mathematics, Vol. 42, 1989, pp. 1097-1112. doi:10.1002/cpa.3160420804
[2] B. Sapoval, Physical Review Letters, Vol. 73, 1994, pp. 3314-3316. doi:10.1103/PhysRevLett.73.3314
[3] D. S. Grebenkov, M. Filoche and B. Sapoval, Physical Revie E, Vol. 73, 2006, Article ID: 021103. doi:10.1103/PhysRevE.73.021103
[4] O. Kellog, “Foundation of Potential Theory,” Dover, New York, 1954.
[5] I. Baydoun and V. A. Zagrebnov, Theoretical and Mathematical Physics, Vol. 168, 2011, pp. 1180-1191. doi:10.1007/s11232-011-0097-8
[6] I. Baydoun, Journal of Modern Physics, 2013, in Press, Article ID: 7501125.
[7] M. E. Taylor, “Partial Differential Equations II: Qualitative Studies of Linear Equations,” Springer-Verlag, Berlin, 1996. doi:10.1007/978-1-4757-4187-2
[8] J. K. Hunter and B. Nachtergaele, “Applied Analysis,” World Scientific, Singapore, 2001.
[9] D. Tataru, Communications in Partial Differential Equations, Vol. 20, 1995, pp. 855-884. doi:10.1080/03605309508821117
[10] I. Baydoun, Operateurs de Dirichlet-Neumann et leurs applications. Editions universitaires europeennes. 978-3-417-9078-1, 2012.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.