Share This Article:

Heterostructure Solar Cells Based on Sol-Gel Deposited SnO2 and Electrochemically Deposited Cu2O

DOI: 10.4236/msa.2013.46A001    3,757 Downloads   6,411 Views   Citations

ABSTRACT

To fabricate a heterostructure solar cell using environmentally friendly materials and low cost techniques, tin oxide (SnO2) and cuprous oxide (Cu2O) were deposited by the sol-gel method and the electrochemical deposition, respectively. The SnO2 films were deposited from a SnCl2 solution containing ethanol and acetic acid. The Cu2O films were deposited using a galvanostatic method from an aqueous bath containing CuSO4 and lactic acid at a temperature of 40°C. The Cu2O/SnO2 heterostructure solar cells showed rectification and photovoltaic properties, and the best cell showed a conversion efficiency of 6.6 × 10-2 % with an open-circuit voltage of 0.29 V, a short-circuit current of 0.58 mA/cm2, and a fill factor of 0.39.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Fukuda and M. Ichimura, "Heterostructure Solar Cells Based on Sol-Gel Deposited SnO2 and Electrochemically Deposited Cu2O," Materials Sciences and Applications, Vol. 4 No. 6A, 2013, pp. 1-4. doi: 10.4236/msa.2013.46A001.

References

[1] C. Cobianu, C. Savaniu, P. Siciliano, S. Capone, M. Utriainen and L. Niinisto, “SnO2 Sol-Gel Derived Thin Films for Integrated Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 77, No. 1, 2001, pp. 496-502.
[2] W. Schmid, N. Barsan and U. Weimar, “Sensing of Hydrocarbons with Tin Oxide Sensors: Possible Reaction Path as Revealed by Consumption Measurements,” Sensors and Actuators B: Chemical, Vol. 89, No. 3, 2003, pp. 232-236. doi:10.1016/S0925-4005(02)00470-7
[3] S.-C. Leen, J.-H. Lee, T.-S. Oh and Y.-H. Kim, “Fabrication of Tin Oxide Film by Sol-Gel Method for Photovoltaic Solar Cell System,” Solar Energy Materials and Solar Cells, Vol. 75, No. 3, 2003, pp. 481-487.
[4] Y. Wang, I. Ramos and J. J. Santiago-Aviles, “Optical Bandgap and Photoconductance of Electrospun Tin Oxide Nanofibers,” Journal of Applied Physics, Vol. 102, No. 9, 2007, Article ID: 093517.
[5] S. Shanthi, C. Subramanian and P. Ramasamy, “Growth and Characterization of Antimony Doped Tin Oxide Thin Films,” Journal of Crystal Growth, Vol. 197, No. 4, 1999, pp. 858-864.
[6] E. Shanthi, “Electrical and Optical Properties of Undoped and Antimony-Doped Tin Oxide Films,” Journal of Applied Physics, Vol. 51, No. 12, 1980, pp. 6243-6251. doi:10.1063/1.327610
[7] H. W. Lehmann and R. Widmer, “Preparation and Properties of Reactively Co-Sputtered Transparent Conducting Films,” Thin Solid Films, Vol. 27, No. 2, 1975, pp. 359-368. doi:10.1016/0040-6090(75)90041-3
[8] K. Suzuki and M. Mizuhashi, “Structural, Electrical and Optical Properties of r.f.-Magnetron-Sputtered SnO2:Sb Film,” Thin Solid Films, Vol. 97, No. 2, 1982, pp. 119-127. doi:10.1016/0040-6090(82)90221-8
[9] H. Ahna, J. H. Noha, S.-B. Kima, R. A. Overfelta, Y. S. Yoonb and D.-J. Kim, “Effect of Annealing and Argonto-Oxygen Ratio on Sputtered SnO2 Thin Film Sensor for Ethylene Gas Detection,” Materials Chemistry and Physics, Vol. 124, No. 1, 2010, pp. 563-568. doi:10.1016/j.matchemphys.2010.07.012
[10] D. Davazoglou, “Optical Properties of SnO2 Thin Films Grown by Atmospheric Pressure Chemical Vapour Deposition Oxiding SnCl4,” Thin Solid Films, Vol. 302, No. 1, 1997, pp. 204-213. doi:10.1016/S0040-6090(96)09601-0
[11] G. Sanon, A. Banerjee and A. Mansingh, “Growth and Characterization of Tin Oxide Films Prepared by Chemical Vapour Deposition,” Thin Solid Films, Vol. 190, No. 2, 1989, pp. 287-301. doi:10.1016/0040-6090(89)90918-8
[12] M. Maleki and S. M. Rozati, “Structural, Electrical and Optical Properties of Transparent Conducting SnO2 Films: Effect of the Oxygen Flow Rate,” Physica Scripta, Vol. 86, No. 1, 2012, Article ID: 015801. doi:10.1088/0031-8949/86/01/015801
[13] T. M. Racheva and G. W. Critchlow, “SnO2 Thin Films Prepared by the Sol-Gel Process,” Thin Solid Films, Vol. 292, 1997, pp. 299-302. doi:10.1016/S0040-6090(96)08956-0
[14] M. A. Dal Santos, A. C. Antunes, C. Ribeiro, C. P. F. Borges, S. R. M. Antunes, A. J. Zara and S. A. Pianaro, “Electric and Morphologic Properties of SnO2 Films Prepared by Modified Sol-Gel Process,” Materials Letters, Vol. 57, 2003, pp. 4378-4381. doi:10.1016/S0167-577X(03)00328-8
[15] J. Calderer, J. Esta, H. Luquet and M. Savelli, “Preparation and Characterization of SnO2 (Spray)/CdTe (n or p) Photovoltaic Cells,” Solar Energy Materials, Vol. 5, 1981, pp. 337-347. doi:10.1016/0165-1633(81)90003-4
[16] L. Panadimitrious, N. A. Economou and D. Trivich, “Heterojunction Solar Cells on Cuprous Oxide,” Solar Cells, Vol. 3, 1981, pp. 73-80. doi:10.1016/0379-6787(81)90084-3
[17] M. Ristov, G. Sinadinovski, M. Mitreski and M. Ristova, “Photovoltaic Cells Based on Chemically Deposited pType SnS,” Solar Energy Materials and Solar Cells, Vol. 69, 2001, pp. 17-24. doi:10.1016/S0927-0248(00)00355-X
[18] J. J. M. Vequizo and M. Ichimura, “Fabrication of Electrodeposited SnS/SnO2 Heterojunction Solar Cells,” Japanese Journal of Applied Physics, Vol. 51, 2012, Article ID: 10NC38-1-4. doi:10.1143/JJAP.51.10NC38
[19] M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba and A. Tasaka, “Electrochemically Constructed p-Cu2O/n-ZnO Heterojunction Diode for Photovoltaic Device,” Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 3326-3330. doi:10.1088/0022-3727/40/11/010
[20] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul and T. Sakurai, “Thin Film Deposition of Cu2O and Application for Solar Cells,” Solar Energy, Vol. 80, No. 6, 2006, pp. 715-722. doi:10.1016/j.solener.2005.10.012
[21] J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, “Performance of Cu2O/ZnO Solar Cell Prepared by Two-Step Electrodeposition,” Journal of Applied Electrochemistry, Vol. 34, No. 7, 2004, pp. 687-692. doi:10.1023/B:JACH.0000031166.73660.c1
[22] Y. Luo, L. Wang, Y. Zou, X. Sheng, L. Chang and D. Yang, “Electrochemically Deposited Cu2O on TiO2 Nanorod Arrays for Photovoltaic Application,” Electrochemical and Solid-State Letters, Vol. 15, No. 2, 2012, pp. H34-H36. doi:10.1149/2.016202esl
[23] A. R. Zainun, T. Sakamoto, U. M. Noor, M. Rusop and M. Ichimura, “New Approach for Generating Cu2O/TiO2 Composite Films for Solar Cell Applications,” Materials Letters, Vol. 66, 2012, pp. 254-256. doi:10.1016/j.matlet.2011.08.032
[24] V. Georgieva and M. Ristov, “Electrodeposited Cuprous Oxide on Indium Tin Oxide for Solar Applications,” Solar Energy Materials and Solar Cells, Vol. 73, 2002, pp. 67-73. doi:10.1016/S0927-0248(01)00112-X

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.