Emergence of the Macroscopic Quantum Superposition State in Microtubules

Abstract Full-Text HTML Download Download as PDF (Size:174KB) PP. 734-737
DOI: 10.4236/jmp.2013.46099    2,940 Downloads   4,342 Views  

ABSTRACT

Many researchers conceive communication in Microtubules (MTs), and established theoretical models to show both classical and quantum information processing. In this paper, we studied the usually neglected interactions between the electronic dipole of water molecules in microtubules and the quantized electromagnetic radiation field. We find that the emergence collective coherent radiation, and it can turn into macroscopic quantum superposition state when passing through MTs. This could have a fundamental role in the quantum information processing.

Cite this paper

T. Wu, K. Ren and X. Qiu, "Emergence of the Macroscopic Quantum Superposition State in Microtubules," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 734-737. doi: 10.4236/jmp.2013.46099.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. R. Hameroff and R. C. Watt, Journal of Theoretical Biology, Vol. 98, 1982, pp. 549-561. doi:10.1016/0022-5193(82)90137-0
[2] A. Samsonovich, A. Scott and S. R. Hameroff, Nanobiology, Vol. 1, 1992, p. 457.
[3] H. Athenstaedt, Annals of the New York Academy of Sciences, Vol. 238, 1974, pp. 68-94. doi:10.1111/j.1749-6632.1974.tb26780.x
[4] L. Margulis, L. To and P. Chase, Science, Vol. 200, 1978, pp. 1118-1124. doi:10.1126/science.349692
[5] J. Atema, Journal of Theoretical Biology, Vol. 38, 1973, pp. 181-190. doi:10.1016/0022-5193(73)90233-6
[6] J. A. Tuszynski, S. R. Hameroff, M. V. Sataric, B. Trpisova and M. L. A. Nip, Journal of Theoretical Biology, Vol. 174, 1995, pp. 371-380. doi:10.1006/jtbi.1995.0105
[7] Y. Engleborghs, Nanobiology, Vol. 1, 1992, p. 97.
[8] L. A. Amos and A. Klug, Journal of Cell Science, Vol. 14, 1974, p. 523.
[9] E. Nogales, S. G. Wolf and K. H. Downing, Nature, Vol. 291, 1998, p. 199. doi:10.1038/34465
[10] S. R. Hameroff, Cognitive Science, Vol. 31, 2007, pp. 1035-1045. doi:10.1080/03640210701704004
[11] S. R. Hameroff, A. Nip, M. Porter and J. Tuszynski, Biosystems, Vol. 64, 2002, pp. 149-168. doi:10.1016/S0303-2647(01)00183-6
[12] S. R. Hameroff, Philosophical Transactions of the Royal Society, London Series A, Vol. 356, 1998, p. 1869.
[13] S. Hagan, S. R. Hameroff and J. A. Tuszynski, Physical Reviews E, Vol. 65, 2002, Article ID: 061901. doi:10.1103/PhysRevE.65.061901
[14] J. A. Tuszynski, J. A. Brown, P. Hawrylak and P. Marcer, Philosophical Transactions of the Royal Society A, Vol. 356, 1998, pp. 1897-1926. doi:10.1098/rsta.1998.0255
[15] S. R. Hameroff and R. Penrose, Mathematics and Computers in Simulation, Vol. 40, 1996, pp. 453-480. doi:10.1016/0378-4754(96)80476-9
[16] M. Jibu, S. Hagan, S. R. Hameroff, K. H. Pribram, et al., BioSystems, Vol. 32, 1994, pp. 195-209. doi:10.1016/0303-2647(94)90043-4
[17] Y. Chen and X.-J. Qiu, Acta Physica Sinica, Vol. 52, 2003, p. 1554.
[18] E. D. Giudice, G. Preparata and G. Vitiello, Physical Review Letters, Vol. 61, 1988, pp. 1085-1088. doi:10.1103/PhysRevLett.61.1085

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.