Future Climate Impacts in Woodland and Forest Steppe Based on Holocene Paleoclimatic Trends, Paleobotanical Change in Central Part of the Carpathian Basin (Hungary)


The Sirok Nyírjes-tó peat bog provides an almost full Holocene climatic record reconstructed by bog surface wetness investigations based on plant macrofossil analysis. We compared our macrofossil data to anthracological material derived from archaeological sites and to the newest bioclimatological models of the Carpathian basin. On the basis of environmental historical and climatic data we aimed to reconstruct the expected changes of forested areas in the Carpathian Basin. The results indicate that the surface wetness decreases in long term. Parallel to the Sphagnum-peat decline an open forest and forest steppe developed surrounding the bog. The complete disappearance of Sphagna from the area must be linked to a steady drop in rainfall, resulting in at least 50 mm deficit in the local water balance. This could have been achieved by an increased evapotranspiration as a result of elevated temperatures of the summer growth season. This deficit value must have exceeded even 100 mm during the Middle Holocene Transition.

Share and Cite:

K. Náfrádi, G. Jakab, P. Sümegi, Z. Szelepcsényi and T. Törőcsik, "Future Climate Impacts in Woodland and Forest Steppe Based on Holocene Paleoclimatic Trends, Paleobotanical Change in Central Part of the Carpathian Basin (Hungary)," American Journal of Plant Sciences, Vol. 4 No. 6, 2013, pp. 1187-1203. doi: 10.4236/ajps.2013.46147.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Ødum, “Actual and Potential Tree Line in the North Atlantic Region, Especially in Greenland and the Faroes,” Holarctic Ecology, Vol. 2, No. 4, 1979, pp. 222-227.
[2] R. W. Myster, “Introduction,” In: R. W. Myster, Ed., Post-Agricultural Succession in the Neotropics, Springer Press, New York, 2007, pp. 3-21.
[3] P. Sümegi, G. Persaits and S. Gulyás, “Woodland-Grassland Ecotonal Shifts in Environmental Mosaics: Lessons Learnt from the Environmental History of the Carpathian Basin (Central Europe) during the Holocene and the Last Ice Age Based on Investigation of Paleobotanical and Mollusk Remains,” In: R. W. Myster, Ed., Ecotones between Forest and Grassland, Springer Press, New York. 2012, pp. 17-57. doi:10.1007/978-1-4614-3797-0_2
[4] J. Bartholy, I. Matyasovszky and T. Weidinger, “Regional Climate Change Results in Hungary: A Stochastic Downscaling Method,” Idojárás, Vol. 105, No. 1, 2001, pp. 1-19.
[5] E. Führer and C. Mátyás, “A Klímaváltozás Hatása a Hazai Erdok Szénmegkoto Képességére és Stabilitására,” Magyar Tudomány, Vol. 166, No. 7, 2005, pp. 837-841.
[6] P. Sümegi, “Loess and Upper Paleolithic environment in Hungary,” Aurea Kiadó, Nagykovácsi, 2005.
[7] A. R. Gardner, “Neolithic to Copper Age Woodland Impacts in Northeast Hungary? Evidence from the Pollen and Sediment Chemistry Records,” The Holocene, Vol. 12, No. 5, 2002, pp. 521-553. doi:10.1191/0959683602hl561rp
[8] A. Gardner, “Natural Environmental or Human Impact? A Palaeoecological Study of Two Contrasting Sites in North-Eastern Hungary,” In: E.-J. Gál and P. I. Sümegi, Eds., Environmental Archaeology in North-Eastern Hungary, Varia Archaeologica Hungarica Sorozat, XIX. Kotet, MTA Régészeti Intézet, Budapest, 2005, pp. 87-106.
[9] G. Jakab and P. Sümegi, “Preliminary Data on the Bog Surface Wetness from the Sirok Nyírjes-tó Peat Bog, Mátra Mts, Hungary,” Central European Geology, Vol. 53, No. 1, 2010, pp. 43-65. doi:10.1556/CEuGeol.53.2010.1.3
[10] K. Náfrádi, “Régészeti Lelohelyek Szenült Faanyagának Határozása és értékelése a Geoarcheológiai Kutatásokban,” SZTE TTIK Foldtani és Oslénytani Tanszék, PhD dolgozat, Szeged, 2012.
[11] Z. Szelepcsényi, H. Breuer, F.ács and I. Kozma, “Biofizikai Klímaklasszifikációk (1. Rész: A Módszerek Bemutatása),” Légkor, Vol. 54, No. 3, 2009, pp. 21-26.
[12] Z. Szelepcsényi, H. Breuer, F.ács and I. Kozma, “Biofizikai Klímaklasszifikációk (1. Rész: A Módszerek Bemutatása),” Légkor, Vol. 54, No. 4, 2009, pp. 18-23.
[13] B. Aaby, “Cyclic Climatic Variations in Climate over the Past 5500 Yrs Reflected in Raised Bogs,” Nature, Vol. 263, No. 5575, 1976, pp. 281-284. doi:10.1038/263281a0
[14] K. E. Barber, “Peatland Records of Holocene Climate Change,” In: S. A. Elias, Ed., Encyclopedia of Quartermary Science, Elsevier, Vol. 3, 2007, pp. 1883-1894. doi:10.1016/B0-44-452747-8/00383-5
[15] P. D. M. Hughes, D. Mauquoy, K. E. Barber and P. G. Langdon, “Mire Development Pathways and Palaeoclimatic Records from a Full Holocene Peat Archive at Walton Moss, Cumbria, England,” The Holocene, Vol. 10, No. 4, 2000, pp. 465-479. doi:10.1191/095968300675142023
[16] K. E. Barber and P. G. Langdon, “Peat Stratigraphy and Climate Change,” In: D. R. Brothwell and A. M. Pollard, Eds., Handbook of Archaeological Sciences, Wiley, Chicester, 2001, pp. 155-166.
[17] K. E. Barber and D. Charman, “Holocene Palaeoclimate Records from Peatlands,” In: A. Mackay, R. Battarbee, J. Birks and F. Oldfield, Eds., Global Change in the Holocene, Hodder Arnold, London, 2005, pp. 210-226.
[18] H. H. Birks, “Plant Macrofossil Introduction,” In: S. A. Elias, Ed., Encyclopedia of Quaternary Science, Elsevier, Vol. 3, 2007, pp. 2266-2288. doi:10.1016/B0-44-452747-8/00215-5
[19] D. Mauquoy and B. van Geel, “Mire and Peat Macros,” In: S. A. Elias, Ed., Encyclopedia of Quatermary Science, Elsevier, Vol. 3, 2007, pp. 2315-2336. doi:10.1016/B0-44-452747-8/00229-5
[20] K. E. Barber, F. M. Chambers, D. Maddy and J. Brew, “A Sensitive High Resolution Record of the Holocene Climatic Change from a Raised Bog in Northern England,” The Holocene, Vol. 4, No. 2, 1994, pp. 198-205. doi:10.1177/095968369400400209
[21] D. Mauquoy and K. Barber, “A Replicated 3000 yr Proxy-Climate Record from Coom Rigg Moss and Felicia Moss, The Border Mires, Northern England,” Journal of Quaternary Science, Vol. 14, No. 3, 1999, pp. 263-275. doi:10.1002/(SICI)1099-1417(199905)14:3<263::AID-JQS445>3.0.CO;2-W
[22] K. E. Barber, D. Maddy, N. Rose, A. C. Stevenson, R. Stoneman and R. Thompson, “Replicated Proxy-Climate Signals over the Last 2000 yr from Two Distant UK Peat Bogs: New Evidence for Regional Palaeoclimate Teleconnections,” Quaternary Science Reviews, Vol. 19, No. 6, 2000, pp. 481-487. doi:10.1016/S0277-3791(99)00102-X
[23] J. Blackford, “Palaeoclimatic Records from Peat Bogs,” Trends in Ecology and Evolution, Vol. 15, No. 5, 2000, pp. 193-198. doi:10.1016/S0169-5347(00)01826-7
[24] K. E. Barber, “Peatland Records of Holocene Climate Change,” In: S. A. Elias, Ed., Encyclopedia of Quartermary Science, Elsevier, Vol. 3, 2007, pp. 1883-1894. doi:10.1016/B0-44-452747-8/00383-5
[25] M. Valiranta, A. Korhola, H. Seppa, E. Tuittila, K. Sarmaja-Korhonen, J. Laine and J. Alm, “High Resolution Reconstruction of Wetness Dynamics in Southern Boreal Raised Bog, Finland, during the Late Holocene: A Quantitative Approach,” The Holocene, Vol. 17, No. 8, 2007, pp. 1093-1107.
[26] K. Buczkó, E. K. Magyari, P. Bitusik and A. Wacnik, “Review of Dated Late Quaternarypalaeolimnological Records in the Carpathian Region, East-Central Europe,” Hydrobiologia, Vol. 631, No. 1, 2009, pp. 3-28.
[27] á. Boros, “Bryogeographie und Bryoflora Ungarns,” Akadémiai Kiadó, Budapest, 1968, 466 p.
[28] E. Szurdoki and J. Nagy, “Sphagnum Dominated Mires and Sphagnum Occurrences of North-Hungary,” Folia Historico Naturalia Musei Matrensis, Vol. 26, No. 1, 2002, pp. 67-84.
[29] W. Koppen, “Die Klimate der Erde. Grundriss der Klimakunde,” Walter de Gruyter, 1923.
[30] Z. Dobosi and L. Felméry, “Klimatológia,” Tankonyvkiadó, Budapest, 1977, 496 p.
[31] L. R. Holdridge, “Determination of World Formulations from Simple Climatic Data,” Science, Vol. 105, No. 2727, 1947, pp. 367-368. doi:10.1126/science.105.2727.367
[32] L. R. Holdridge, “Life Zone Ecology,” Tropical Science Center, San Jose, 1967.
[33] Z. Szelepcsényi, “A Kárpát-Medence éghajlata a XX. Században Holdridge életforma Rendszere Alapján,” OFKD dolgozat. XIII. Országos Felsooktatási Kornyezettudományi Diákkonferencia, Veszprém, 2012, 33 p.
[34] T. D. Mitchell, T. R. Carter, P. D. Jones, M. Hulme and M. New, “A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901-2000) and 16 Scenarios (2001-2100),” Tyndall Working Paper 55, Tyndall Centre, UEA, Norwich, 2010. http://www.tyndall.ac.uk/sites/default/files/wp55.pdf
[35] I. Máthé and M. Kovács, “A Mátra Tozegmohás Lápja,” Botanikai Kozlemények, Vol. 47, No. 3-4, 1958, pp. 323-331.
[36] E. Szurdoki, “Magyarországi Tozegmohafajok Elterjedése és Egyes Fajok Vízkémiai Igényének Vizsgálata (Distribution of Hungarian Peat Mosses and Investigation of Water Chemical Relation of Some Species),” PhD Thesis, L. Eotvos University, Budapest, 2005.
[37] K. Penksza, G. Turcsányi and M. Kovács, “A Siroki Nyírjes-tó Tozegmohalápjának Elemkatasztere (Element Concentration Cadasters of Peat Profiles in Nyírjes Bog Near Sirok in Hungary),” Botanikai Kozlemények, Vol. 81, No. 1, 1994, pp. 29-41.
[38] P. C. Jowsey, “An Improved Peat Sampler,” New Phytologist, Vol. 65, No. 2, 1966, pp. 245-248. doi:10.1111/j.1469-8137.1966.tb06356.x
[39] B. Aaby and G. Digerfeldt, “Sampling Techniques for Lakes and Bogs”, In: B. E. Berglund, Ed., Handbook of Holocene Palaeoecology and Palaeohydrology, John Wiley and Sons Ltd., Hoboken, 1986, pp. 181-194.
[40] K. D. Bennett, “PSIMPOLL—A QuickBASIC Program That Generates PostScript Page Description of Pollen Diagrams.—INQUA Commission for the Study of the Holocene: Working Group on Data Handling Methods,” Newsletter, Vol. 8, No. 1, 1992, pp. 11-12.
[41] J. Troels-Smith, “Karakterisering af Lose Jordater,” Danmarks Geologiske Undersogelse, Vol. 4, No. 3, 1955, pp. 1-73.
[42] B. Weninger, O. Joris and U. Danzeglocke, “CalPal-2007. Cologne, Radiocarbon Calibration & Palaeoclimate Research Package,” 2008. http://www.calpal.de
[43] G. Jakab, P. Sümegi and E. Magyari, “A New Palaeobotanical Method for the Description of Late Quarternary Organic Sediments (Mire-Development Pathways and Palaeoclimatic Records from S Hungary),” Acta Geologica Hungarica, Vol. 47, No. 4, 2004, pp. 1-37. doi:10.1556/AGeol.47.2004.4.4
[44] S. Jacomet and A. Kreuz, “Archaobotanik. Aufgaben, Methoden und Ergebnisse Vegetations und Agrargeschichtlicher Forschung,” Ulmer, Stuttgart, 1999.
[45] F. Gyulai, “Archaeobotanika. A Kulturnóvenyek Tórtenete a Karpat-Medenceben a Regeszeti Nóvenytani Yizsgalatok Alapjan (Archaeobotany. The History of Cultivated Plants on the Basis of Archaeological Plant Remains in the Carpathian Basin),” Jószóveg Miihely, Budapest, 2001.
[46] E. Asouti and P. Austin, “Reconstructing Woodland Vegetation and Its Exploitation by Past Societies, Based on the Analysis and Interpretation of Archaeological Wood Charcoal Macro-Remains,” Environmental Archaeology, Vol. 10, No. 1, 2005, pp. 1-18. doi:10.1179/146141005790083867
[47] L. Chabal, L. Fabre, J. F. Terral and L. Thery-Parisot, “L’Anthracologie,” In: L. Chabal, S. Crozat, L. Fabre, F. Guibal, P. Marinval, H. Richard, J. F. Terral and I. Thery, Eds., Bourauin-Mignot C., Brochier J.E., La Botaniaue, Paris, 1999, pp. 43-104.
[48] C. A. Keepax, “Charcoal Analysis with Particular Reference to Archaeological Sites in Britain,” Unpublished PhD Thesis, University of London, London, 1988.
[49] S. Sarkany, “A Fak Osszehasonlito Szovettani Vizsgalata Kulfoldon es Hazankban (Comparative Wood Anatomical Analysis of Trees in Hungary and Abroad),” Botanikai Kozlemények, Vol. 35, No. 5-6, 1938, pp. 296-309.
[50] P. Greguss, “A Kozepeuropai Lomblevelu Fak es Cserjek Meghatarozasa Szovettani Alapon (Wood Anatomical identification of Central European Trees and Shrubs),” Orszagos Magyar Termeszettudomanyi Muzeum, Budapest, 1945. (in Hungarian)
[51] P. Greguss, “Xylotomy of the Living Conifers,” Akademia Kiadó, Budapest, 1972
[52] F. H. Schweingruber, “Mikroskopische Holzanatomie Birmensdorf, Bidgenóssiche Forschungsantalt fur Wald,” Schnee und Landchaft, 1990.
[53] G. Grosse-Brauckmann, W. Haussner and K. Mohr, “über Eine Kleine Vermoorung im Odenwald, Ihre Ablagerungen und Ihre Entwicklung der Umgebenden Kulturlandschaft,” Kulturtechnik und Flurbereinigung, Vol. 14, 1973, pp. 132-143.
[54] E. Rybnícková, “Die Entwicklung der Vegetation und Flora im Südlichen Teil der Bohmisch-Mahrischen Hohe wohrend des Spatglacial und Holozans,” Vegetace CSSR, Vol. 7, 1974, pp. 1-163.
[55] K. Rybnícek and E. Rybnícková, “The Origin and Development of Waterlogged Meadows in the Central Part of the Sumava Foothills,” Folia Geobotanica & Phytotaxonomica, Vol. 9, No. 1, 1974, pp. 45-70.
[56] K. Lájer, “Bevezetés a Magyarországi Lápok Vegetáció-Okológiájába (Introduction to the Vegetation Ecology of the Peatbogs in Hungary),” Tilia, Vol. 6, 1998, pp. 84-238.
[57] A. Borhidi and A. Sánta (Eds) “Voros Konyv Magyarország Novénytársulásairól 1-2 (Red Book of Plant Communities in Hungary),” Természetbúvár Alapítvány Kiadó, Budapest, 1999, pp. 362-404.
[58] P. Sümegi, S. Gulyás and G. Jakab, “Holocene Paleoclimatic and Paleohydrological Changes in Lake Balaton as Inferred from a Complex Quantitative Environmental Historical Study of a Lacustrine Sequence of the Szigliget Embayment,” Documenta Praehistorica, Vol. 35, No. 1, 2008, pp. 33-43.
[59] P. Sümegi, G. Jakab, P. Majkut, T. Torocsik and Cs. Zatykó, “Middle Age Paleoecological and Paleoclimatological Reconstruction in the Carpathian Basin,” Idojárás, Vol. 113, No. 4, 2009, pp. 265-298.
[60] E. Magyari, K. Buczkó, G. Jakab, M. Braun, Zs. Szántó, M. Molnár, Z. Pál and D. Karátson, “Holocene Palaeohydrology and Environmental History in the South Harghita Mountains, Romania,” Foldtani Kozlony, Vol. 136, No. 2, 2006, pp. 249-284
[61] E. K. Magyari, K. Buczkó, G. Jakab, M. Braun, Z. Pál and D. Karátson, “Palaeolimnology of the Last Eastern Carpathian Crater Lake—A Multiproxy Study of Holocene Hydrological Changes,” Hydrobiologia, Vol. 631, No. 1, 2009, pp. 29-63. doi:10.1007/s10750-009-9801-1
[62] P. Sümegi, “The Sediment Sequence from Mezolak,” In: Cs. Zatykó, I. Juhász and P. Sümegi, Eds., Environmental Archaeology in Transdanubia (Hungary), Varia Archaeologica Hungarica, Budapest, 2007, pp. 403-404.
[63] U. E. Joerin, K. Nicolussi, A. Fischer, T. F. Stocker and C. Schlüchter, “Holocene Optimum Events Inferred from Subglacial Sediments at Tschierva Glacier, Eastern Swiss Alps,” Quaternary Science Reviews, Vol. 27, No. 3-4, 2008, pp. 337-350. doi:10.1016/j.quascirev.2007.10.016
[64] R. Cheddadi, G. Yu, J. Guiot, S. P. Harrison and I. C. Prentice, “The Climate of Europe 6000 Years Ago,” Climate Dynamics, Vol. 13, No. 1, 1997, pp. 1-9. doi:10.1007/s003820050148
[65] B. A. S. Davis, S. Brewer, A. C. Stevenson, J. Guiot and Data Contributors, “The Temperature of Europe During the Holocene Reconstructed from Pollen Data,” Quarternary Science Reviews, Vol. 22, No. 15-17, 2003, pp. 1701-1716. doi:10.1016/S0277-3791(03)00173-2
[66] E. Magyari, P. Sümegi, M. Braun, G. Jakab and M. Molnár, “Retarded Wetland Succession: Anthropogenic and Climatic Signals in a Holocene Peat Bog Profile from NorthEast Hungary,” Journal of Ecology, Vol. 89, No. 6, 2001, pp. 1019-1032. doi:10.1111/j.1365-2745.2001.00624.x
[67] E. K. Magyari, J. C. Chapman, D. G. Passmore, J. R. M. Allen, J. P. Huntley and B. Huntley, “Holocene Persistence of Wooded Steppe in the Northern Great Hungarian Plain,” Journal of Biogeography, Vol. 37, No. 5, 2010, pp. 915-935. doi:10.1111/j.1365-2699.2009.02261.x
[68] M. Magny, U. Leuzinger, S. Bortenschlager and J. N. Haas, “Tripartite Climate Reversal in Central Europe 5600-5300 Years Ago,” Quaternary Research, Vol. 65, No. 1, 2006, pp. 3-19. doi:10.1016/j.yqres.2005.06.009
[69] Y. Iizuka, T. Hondoh and Y. Fujii, “Antarctic Sea Ice Extent during the Holocene Reconstructed from Inland Ice Core Evidence,” Journal of Geophysical Research, Vol. 113, No. D15, 2008, in Press. doi:10.1029/2007JD009326
[70] R. B. Alley, P. A. Mayewski, P. T. Sowers, M. Stuiver, K. C. Taylor and P. U. Clark, “Holocene Climatic Instability: A Prominent, Widespread Event 8200 yr Ago,” The Geological Society of America, Vol. 25, No. 6, 1997, pp. 483-486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2
[71] R. B. Alley and A. M. ágústsdóttir, “The 8k Event: Cause and Consequences of a Major Holocene Abrupt Climate Change,” Quaternary Science Reviews, Vol. 24, No. 10-11, 2005, pp. 1123-1149. doi:10.1016/j.quascirev.2004.12.004
[72] G. Bond, W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas and G. Bonani, “A Pervasive Millenial-Scale Cycle in North Atlantic Holocene and Glacial Climates,” Science, Vol. 278, No. 5341, 1997, pp. 1257-1266. doi:10.1126/science.278.5341.1257
[73] A. Nesje and S. O. Dahl, “The Greenland 8200 Cal. yr BP Event Detected in Loss-On-Ignition Profiles in Norwegian Lacustrine Sediment Sequences,” Journal of Quarternary Science, Vol. 16, No. 2, 2001, pp. 155-166. doi:10.1002/jqs.567
[74] M. Magny, “Reconstruction of Holocene Lake-Level Changes in the Jura (France): Methods and Results,” In: S. P. Harrison, B. Frenzel, U. Huckried and M. Weiss, Eds., Palaeohydrology as Reflected in Lake-Level Changes as Climatic Evidence for Holocene Times, Palaoklima-forSchung, 1998, pp. 67-85.
[75] M. Magny and P. Schoellammer, “Lake-Level Fluctuations at Le Locle, Swiss Jura, from the Younger Dryas to the Mid-Holocene: A High-Resolution Record of Climate Oscillations during the Final Deglaciation,” Géographie Physique et Quaternaire, Vol. 53, No. 2, 1999, pp. 183-197. doi:10.7202/005693ar
[76] M. Magny, C. Miramont and O. Sivan, “Assessment of Climate and Antropogenic Factors on Holocene Mediterranean Vegetation in Europe on the Basis of Palaeohydrological Records,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 186, No. 1-2, 2002, pp. 47-59. doi:10.1016/S0031-0182(02)00442-X
[77] J. N. Haas, I. Richoz, W. Tinner and L. Wick, “Synchronous Holocene Climatic Oscillations Recorded on the Swiss Plateau and at the Timberline in the Alps,” The Holocene, Vol. 8, No. 3, 1998, pp. 301-304. doi:10.1191/095968398675491173
[78] A. Feurdean, S. Klotz, V. Mosbrugger and B. Wohlfarth, “Pollen-Based Quantitative Reconstructions of Holocene Climate Variability in NW Romania,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 260, No. 3-4, 2008, pp. 494-504. doi:10.1016/j.palaeo.2007.12.014
[79] C. Schnitchen, E. Magyari, B. Tóthmérész, I. Grigorszky and M. Braun, “Micropaleontological Observations on a Sphagnum Bog in East Carpathian Region—Testate Amoebae (Rhizopoda: Testacea) and Their Potential Use for Reconstruction of Microand Macroclimatic Changes,” Hydrobiologia, Vol. 506, No. 1-3, 2003, pp. 45-49. doi:10.1023/B:HYDR.0000008553.82554.c2
[80] G. Jakab and P. Sümegi, “The Vegetation History of Baláta-Tó,” In: I. E. Juhász, Cs. Zatykó, P. Sümegi, Eds., Environmental History of Transdanubia, Varia Archaeologica Hungarica, Budapest, 2007, pp. 251-254.
[81] Cs. Schnitchen, D. J. Charman, E. Magyari, M. Braun, I. Grigorszky, B. Tóthmérész, M. Molnár and Zs. Szántó, “Reconstructing Hydrological Variability from Testate Amoebae Analysis in Carpathian Peatlands,” Journal of Paleolimnology, Vol. 36, No. 1, 2006, pp. 1-17. doi:10.1007/s10933-006-0001-y
[82] Gy. Gyorffy and B. Zólyomi, “A Kárpát-Medence és Etelkoz Képe egy évezred Elott (The People of the Carpathian Basin and Etelkoz 1000 Years Ago),” In: Gy. Gyorffy, L. Kovács, Eds., Honfoglalás és Régészet (Hungarian Conquest and Archaeology), Balassi Kiadó, Budapest, 1994, pp. 13-37.
[83] Gy. Gyorffy, “Hová Lettek az Avarok (Where did the Avars Go)?” História, Vol. 17, No. 3, 1995, pp. 3-9.
[84] A. Kiss, “Weather Events during the First Tartar Invasion in Hungary (1241-42),” Acta Geographica Szegediensis, Vol. 37, 2000, pp. 149-156.
[85] A. Kiss, “Ecce, in Hyemis Nivis et Glaciei Habundantia Supervenit—Idojárás, Kornyezeti Krízis és a Tatárjárás (Meteorology, Environmental Crisis and the Invasion of the Mongols),” In: B. Nagy, Ed., Tatárjárás (Invasion of the Mongols), Osiris Kiadó, Budapest, 2003, pp. 439-452.
[86] C. Pfister, “Wetternachhersage: 500 Jahre Klimavariationen und Naturkatastrophen (1496-1995),” Haupt, Bern, 1999, 304 p.
[87] C. Pfister and R. Brázdil, “Climatic Variability in Sixteenth-Century Europe and Its Social Dimension: A Synthesis,” Climatic Change, Vol. 43, No. 1, 1999, pp. 5-53. doi:10.1023/A:1005585931899
[88] R. S. Bradley, M. K. Hughes and H. F. Diaz, “Climate in Medieval Time,” Science, Vol. 302, No. 5644, 2003, pp. 404-405. doi:10.1126/science.1090372
[89] D. Mauquoy, T. Engelkes, M. H. M. Groot, F. Markesteijn, M. G. Oudejans, J. van der Plicht and B. van Geel, “High-Resolution Records of Late Holocene Climate Change and Carbon Accumulation in Two Northwest European Ombrotrophic Peat Bogs,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 186, No. 3-4, 2002. pp. 275-310. doi:10.1016/S0031-0182(02)00513-8
[90] I. Popa and Z. Kern, “Long-Term Summer Temperature Reconstruction Inferred from Tree-Ring Records from the Eastern Carpathians,” Climate Dynamics, Vol. 32, No. 7-8, 2009, pp. 1107-1117. doi:10.1007/s00382-008-0439-x
[91] M. Blaauw, B. van Geel and J. van der Plicht, “Solar Forcing of Climatic Change during the Mid-Holocene: Indicators from Raised Bogs in The Netherlands, The Holocene, Vol. 14, No. 1, 2004, pp. 35-44. doi:10.1191/0959683604hl687rp
[92] K. Schoning, D. J. Charman and S. Wastegard, “Reconstructed Water Tables from Two Ombrotrophic Mires in Eastern Central Sweden Compared with Instrumental Meteorological Data,” The Holocene, Vol. 15, No. 1, 2005, pp. 111-118. doi:10.1191/0959683605hl772rp
[93] D. J. Charman, K. E. Barber, M. Blaauw, P. G. Langdon, D. Mauquoy, T. J. Daley, P. D. M. Hughes and E. Karofeld, “Climate Drivers for Peatland Palaeoclimate Records,” Quaternary Science Reviews, Vol. 28, No. 19-20, 2009, pp. 1811-1819. doi:10.1016/j.quascirev.2009.05.013
[94] G. T. Swindles, A. Blundell, H. M. Roe and V. A. Hall, “A 4500-Year Proxy Climate Record from Peatlands in the Noth of Ireland: The Identification of Widespread Summer ‘Drought Phases’?” Quaternary Science Reviews, Vol. 29, No.13-14, 2010, pp. 1577-1589. doi:10.1016/j.quascirev.2009.01.003
[95] D. J. Charman, “Summer Water Deficit Controls on Peatland Water Table Changes: Implications for Holocene Palaeoclimate Reconstructions,” The Holocene, Vol. 17, No. 2, 2007, pp. 217-227. doi:10.1177/0959683607075836

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.