Soil Carbon Changes Influenced by Soil Management and Calculation Method


Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing bulk density (ρb). This study evaluates the temporal changes in SOC caused by two factors: 1) changing SOC concentration; and 2) changing equivalent soil mass (ESM) in comparison with FD. In addition, this study evaluates calculating changes in SOC stock over time using a minimum equivalent soil mass (ESMmin) basis from a single sampling event compared with the FD scenario. A tillage [no-tillage (NT) and chisel plow (CP)]-crop rotation (multiple crop and continuous corn), and irrigation (full and delayed)) study was initiated in 2001 on Weld silt loam soil. After seven years, SOC concentration in the 0 - 30 cm depth was 19.7% greater in 2008 compared with 2001. Standardizing the soil mass of 2001 to the ESM of 2008 for each individual treatment showed an average gain in SOC of 5.8 Mg C·ha-1 in 2008 compared with 2001. However, the increase in SOC using ESM was twice the SOC gained with the FD calculation, where some treatments lost SOC after seven years of management. Estimating SOC levels using the ESMmin and, thereby, eliminating the confounding effect of soil ρb indicated that SOC stock was influenced by crop species and their interaction with irrigation, but not by tillage practices. Over all, the ESM calculation appears to be more effective in evaluating SOC stock than the FD calculation.

Share and Cite:

M. Mikha, J. Benjamin, A. Halvorson and D. Nielsen, "Soil Carbon Changes Influenced by Soil Management and Calculation Method," Open Journal of Soil Science, Vol. 3 No. 2, 2013, pp. 123-131. doi: 10.4236/ojss.2013.32014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. A. Peterson, A. D. Halvorson, J. L. Havlin, O. R. Jones, D. J. Lyon and D. L. Tanaka, “Reduced Tillage and Increasing Cropping Intensity in the Great Plains Conserves Soil C,” Soil and Tillage Research, Vol. 47, No. 3-4, 1998, pp. 207-218. doi:10.1016/S0167-1987(98)00107-X
[2] A. D. Halvorson, G. A. Peterson and C. A. Reule, “Till age System and Crop Rotation Effects on Dryland Crop Yield and Soil Carbon in the Central Great Plains,” Agronomy Journal, Vol. 94, No. 6, 2002, pp. 1429-1436. doi:10.2134/agronj2002.1429
[3] M. M. Mikha and C. W. Rice, “Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen,” Soil Science Society of American Journal, Vol. 68, No. 3, 2004, pp. 809-816. doi:10.2136/sssaj2004.0809
[4] K. A. McVay, J. A. Budde, K. Fabrizzi, M. M. Mikha, C. W. Rice, A. J. Schlegel, D. E. Peterson, D. W. Sweeney and C. Thompson, “Management Effects on Soil Physical Properties in Long-Term Tillage Studies in Kansas,” Soil Science Society of American Journal, Vol. 70, No. 2, 2006, pp. 434-438. doi:10.2136/sssaj2005.0249
[5] M. M. Mikha, M. F. Vigil, M. A. Liebig, R. A. Bowman, B. McConkey, E. J. Deibert and J. L. Pikul Jr., “Cropping System Influences on Soil Chemical Properties and Soil Quality in the Great Plains,” Renewable Agricultural and Food System, Vol. 21, No. 1, 2006, pp. 26-35. doi:10.1079/RAFS2005123
[6] J. G. Benjamin, A. D. Halvorson, D. C. Nielsen and M. M. Mikha, “Crop Management Effects on Crop Residue Production and Changes in Soil Organic Carbon in the Central Great Plains,” Agronomy Journal, Vol. 102, No. 3, 2010, pp. 990-997. doi:10.2134/agronj2009.0483
[7] C. P. Jantalia and A. D. Halvorson, “Nitrogen Fertilizer Effects on Irrigated Conventional Tillage Corn Yields and Soil Carbon and Nitrogen Pools,” Agronomy Journal, Vol. 103, No. 3, 2011, pp. 871-878. doi:10.2134/agronj2010.0455
[8] A. D. Halvorson and C. P. Jantalia, “Nitrogen Fertilization Effects on Irrigated No-Till Corn Production and Soil Carbon and Nitrogen,” Agronomy Journal, Vol. 103, No. 5, 2011, pp. 1423-1431. doi:10.2134/agronj2011.0102
[9] A. D. Halvorson, C. A. Reule and R. F. Follett, “Nitrogen Fertilization Effects on Soil Carbon and Nitrogen in a Dryland Cropping System,” Soil Science Society of American Journal, Vol. 63, No. 4, 1999, pp. 912-917. doi:10.2136/sssaj1999.634912x
[10] J. A. Amador, Y. Wang, M. C. Savin and J. H. Gorres, “Fine-Scale Spatial Variability of Physical and Biological Soil Properties in Kingston, Rhode Island,” Geoderma, Vol. 98, No. 1-2, 2000, pp. 83-94. doi:10.1016/S0016-7061(00)00053-7
[11] J. G. Benjamin, M. M. Mikha, A. D. Nielsen, M. F. Vigil, F. Calderon and W. B. Henry, “Cropping Intensity Effects on Physical Properties of No-Till Silt Loam,” Soil Science Society of American Journal, Vol. 71, No. 4, 2007, pp. 1160-1165. doi:10.2136/sssaj2006.0363
[12] M. M. Mikha, M. F. Vigil and J. G. Benjamin, “Long Term Tillage Impacts on Soil Aggregation and Carbon Dynamics under Wheat-Fallow in the Central Great Plains,” Soil Science Society of American Journal, Vol. 77, No. 2, 2013, pp. 594-605. doi:10.2136/sssaj2012.0125
[13] B. H. Ellert and J. R. Bettany, “Calculation of Organic Matter and Nutrients Stored in Soil under Contrasting Management Regimes,” Canadian Society of Soil Science, Vol. 75, No, 4, 1995, pp. 529-538. doi:10.4141/cjss95-075
[14] X.-M. Yang and M. M. Wander, “Tillage Effects on Soil Organic Carbon Distribution and Storage in a Silt Loam Soil in Illinois,” Soil and Tillage Research, Vol. 52, No. 1-2, 1999, pp. 1-9. doi:10.1016/S0167-1987(99)00051-3
[15] R. M. Gifford and N. L. Roderick, “Soil Carbon Stocks and Bulk Density: Special or Cumulative Mass Coordinates as a Basis for Expression?” Global Change Biology, Vol. 9, No. 11, 2003, pp. 1507-1514. doi:10.1046/j.1365-2486.2003.00677.x
[16] J. Lee, J. W. Hopmans, D. E. Rolston, S. G. Baer and J. Six, “Determining Soil Carbon Stock Changes: Simple Bulk Density Fail,” Agriculture, Ecosystems and Environment, Vol. 134, No. 3-4, 2009, pp. 251-256. doi:10.1016/j.agee.2009.07.006
[17] S. B Wuest, “Correction of Bulk Density and Sampling Method Biases Using Soil Mass per Unit Area,” Soil Science Society of American Journal, Vol. 73, No. 1, 2009, pp. 312-316. doi:10.2136/sssaj2008.0063
[18] A. Gál, T. J. Vyn, E. Michéli, E. J. Kladivko and W. W. McFee, “Soil Carbon and Nitrogen Accumulation with Long-Term No-Till Versus Mouldboard Plowing Overestimated with Tilled-Zone Sampling Depths,” Soil and Tillage Research, Vol. 96, No. 1-2, 2007, pp. 42-51. doi:10.1016/j.still.2007.02.007
[19] B. H. Ellert, H. H. Janzen and B. G. McConkey, “Measuring and Comparing Soil Carbon Storage,” In: R. Lal, Ed., Assessment Methods for Soil Carbon, Lewis Publishers, CRC Press, Boca Raton, 2001, pp. 131-144.
[20] L. A. Sherrod, G. Dunn, G. A. Peterson and R. L. Kol berg, “Inorganic Carbon Analysis by Modified Pressure Calcimeter Method,” Soil Science Society of American Journal, Vol. 66, No. 1, 2002, pp. 299-305. doi:10.2136/sssaj2002.0299
[21] R. C. Littell, G. A. Milliken, W. W. Stroup, R. D. Wolfinger and O. Schabenberger, “SAS for Mixed Models,” SAS Institute Inc., Cary, 2006.
[22] S. D. Logsdon and C. A. Cambardella, “Temporal Changes in Small Depth-Incremental Soil Bulk Density,” Soil Science Society of American Journal, Vol. 64, No. 2, 2000, pp. 710-714. doi:10.2136/sssaj2000.642710x
[23] A. Kulmatiski and K. H. Beard, “Reducing Sampling Error in Soil Research,” Soil Biology and Biochemistry, Vol. 36, No. 2, 2004, pp. 383-385. doi:10.1016/j.soilbio.2003.10.004

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.