Evolutionary adaptations of human cancer for parasitic life


According to the xenogamous paradigm of cancer origin, pathogenesis and epidemic spread, human cancer is a disease caused by the appearance in the afflicted body of deviant multicellular structures whose cells are aggressive (gobble the afflicted body; grow and divide without respect to normal limits), invasive (invade and destroy adjacent tissues), metastatic (dispersed over embryogenesis at different locations in the body) and transmissible. The causative agent of the human disease has only just been identified as an ancient, unprecedentedly unique parasitic being that sustains itself at the expense of substances and energy derived from its victim’s body. Presented integrative discovery consists of a more systematic description of main adaptations of cancer causative agent to this specific way of life developed over its evolution. Focus is on the main stages of cancer existence including cancerous invasion of a human body, make-up of the parasite, its self-protection from the victim’s immune defense and regulatory management, disposition of cancer sub-units around afflicted body, the self-management of cancer and its nutrition, communication between dispersed cancer units, physiological synchronization between them, horizontal (reproductive) way of cancer transmission between humans.

Share and Cite:

Rumyantsev, S. (2013) Evolutionary adaptations of human cancer for parasitic life. Open Journal of Immunology, 3, 54-61. doi: 10.4236/oji.2013.32009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Rumyantsev, S.N. (2008) Hereditary immunity: Fundamental principles and exploitation in life study and health care. Nova Publishers, New York.
[2] Rumyantsev, S.N. (2009) The discredit of cancer metastasis. Science Advisory Board. http://www.scienceboard.net/community/perspectives.227.html
[3] Rumyantsev, S.N. (2009) The uniqueness and ordinaryness of cancer origin and pathogenesis: New epidemiological, clinical and preventive perspectives. Journal of Clinical Medicine Research, 1, 32-36.
[4] Rumyantsev, S.N. (2011) Functions of hereditary immunity and xenogamy in cancer origin and pandemic spread. Open Journal of Immunology, 1, 27-40. doi:10.4236/oji.2011.12004
[5] Bonnicksen, A.L. (2009) Chimeras, hybrids and interspecies research: Politics and policymaking. Georgetown University Press, Washington.
[6] McLaren, A. (1976) Mammalian chimaeras. Cambridge University Press, Cambridge.
[7] Rumyantsev, S.N. (2010) Hypothesis: Towards the origin of cancer epidemics and pathogenesis. Journal of Carcinogenesis, 9, 1-7.
[8] Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S. and Reich, D. (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103-1108. doi:10.1038/nature04789
[9] Sankararaman, S., Patterson, N., Li, H., Paabo, S. and Reich, D. (2012) The date of interbreeding between Neandertals and modern humans. PLoS Genet, 8, Article ID. e1002947.
[10] Rumyantsev, S.N. (2003) The intra-individual diversity in senescence. Biogerontology, 4, 171-178. doi:10.1023/A:1024137418419
[11] Rumyantsev, S.N. (2013) Human cancer is a parasite spread via intrusion in genome. Pure and Applied Biology, 2, 7-16.
[12] Soerjomataram, I. and Coebergh, J.W. (2009) Epidemiology of multiple primary cancers. Methods in Molecular Biology, 471, 85-105. doi:10.1007/978-1-59745-416-2_5
[13] Milan, T., Pukkala, E., Verkasalo, P.K., Kaprio, J., Jansen, C.T., Koskenvuo, M. and Teppo, L. (2000) Subsequent primary cancers after basal-cell carcinoma: A nationwide study in Finland from 1953 to 1995. International Journal of Cancer, 87, 283-288. doi:10.1002/1097-0215(20000715)87:2<283::AID-IJC21>3.0.CO;2-I
[14] Nugent, Z., Demers, A.A., Wiseman, M.C., Mihalcioiu, C. and Kliewer, E.V. (2005) Risk of second primary cancer and death following a diagnosis of nonmelanoma skin cancer. Cancer Epidemiology, Biomarkers & Prevention, 14, 2584-2590. doi:10.1158/1055-9965.EPI-05-0379
[15] Soerjomataram, I., Louwman, W.J., Lemmens, V.E., Coebergh, J.W. and De Vries, E. (2008) Are patients with skin cancer at lower risk of developing colorectal or breast cancer? American Journal of Epidemiology, 167, 1421-1429. doi:10.1093/aje/kwn077
[16] Levi, F., Randimbison, L., Te, V.-C., Conconi, M.M. and Vecchia L.C. (2008) Risk of prostate, breast and colorectal cancer after skin cancer diagnosis. International Journal of Cancer, 123, 2899-3001. doi:10.1002/ijc.23816
[17] Kreso, A., O’Brien, C.A., Van Galen, P., Gan, O.I., Notta, F., Brown, A.M., Ng, K., Ma, J., Wienholds, E., Dunant, C., Pollett, A., Gallinger, S., McPherson, J., Mullighan, C.G., Shibata, D. and Dick, J.E. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339, 543-548. doi:10.1126/science.1227670
[18] Marusyk, A. and Polyak, K. Cancer. (2013) Cancer cell phenotypes, in fifty shades of grey. Science, 339, 528-529. doi:10.1126/science.1234415
[19] Prehn, R.T. (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Research, 53, 3266-3269.
[20] Retsky, M., Demicheli, R., Hrushesky, W., Baum, M. and Gukas, I. (2010) Surgery triggers outgrowth of latent distant disease in breast cancer: An inconvenient truth? Cancers, 2, 305-337. doi:10.3390/cancers2020305
[21] Rumyantsev, S.N. (2012) Toward the genomic roots of cancer. Journal of Medicine and Medical Sciences, 3, 638-659.
[22] Baum, M., Chaplain, M., Anderson, A., Douek, M. and Vaidya, J.S. (1999) Does breast cancer exist in a state of chaos? European Journal of Cancer, 35, 886-891. doi:10.1016/S0959-8049(99)00067-2
[23] Demicheli, R., Retsky, M., Hrushesky, W.J.M., Baum, M. and Gukas, I.D. (2008) The effects of surgery on tumor growth: A century of investigations. Annals of Oncology, 19, 1821-1828. doi:10.1093/annonc/mdn386
[24] Hanin, L. and Korosteleva, O. (2010) Does extirpation of the primary breast tumor give boost to growth of metastases? Evidence revealed by mathematical modeling. Mathematical Biosciences, 223, 133-141. doi:10.1016/j.mbs.2009.11.006
[25] De Jong, K.P., Lont, H.E., Bijma, A.M., Brouwers, M.A., De Vries, E.G., Van Veen, M.L., Marquet, R.L., Slooff, M.J. and Terpstra, O.T. (1995) The effect of partial heaptectomy on tumor growth in rats: In vivo and in vitro studies. Hepatology, 22, 1263-1272. doi:10.1002/hep.1840220436
[26] Garcia-Alonso, I., Palomares, T., Alonso, A., Portugal, V., Castro, B., Carames, J. and Mendez, J. (2003) Effect of hepatic resection on development of liver metastasis. Revista Española de Enfermedades Digestivas, 95, 765-767.
[27] Ikeda, Y., Matsumata, T., Takenaka, K., Sasaki, O., Soejima, K. and Sugimachi, K. (1995) Preliminary report of tumor metastasis during liver regeneration after hepatic resection in rats. European Journal of Surgical Oncology, 21, 188-190. doi:10.1016/S0748-7983(95)90468-9
[28] Elias, D., De Baere, T., Roche, A., Ducreux, M., Leclere, J. and Lasser, P. (1999) During liver regeneration following right portal embolization growth rate of liver metastases is more rapid than that of the liver parenchyma. British Journal of Surgery, 86, 784-788. doi:10.1046/j.1365-2168.1999.01154.x
[29] Von Schweinitz, D., Fuchs, J., Gluer, S. and Pietsch, T. (1998) The occurrence of liver growth factor in hepatoblastoma. European Journal of Pediatric Surgery, 8, 133-136. doi:10.1055/s-2008-1071139
[30] Sorin, V., Mizrahi, A., Ohana, P., Ayesh, S., Birman, T., Hochberg, A. and Czerniak, A. (2009) Partial Hepatectomy in rats results in significant growth of liver metastases by increased expression of H19 gene. Cancer Therapy, 7, 240-244.
[31] Pockaj, B.A., Wasif, N., Dueck, A.C., Wigle, D.A., Boughey, J.C., Degnim, A.C., Gray, R.J., McLaughlin, S.A., Northfelt, D.W., Sticca, R.P., Jakub, J.W. and Perez, E.A. (2010) Metastasectomy and surgical resection of the primary tumor in patients with stage IV breast cancer: Time for a second look? Annals of Surgical Oncology, 17, 2419-2426. doi:10.1245/s10434-010-1016-1
[32] Giuliano, A.E., Hunt, K.K., Ballman, K.V., Beitsch, P.D., Whitworth, P.W., Blumencranz, P.W., Leitch, A.M., Saha, S., McCall, L.M. and Morrow, M. (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA: Journal of the American Medical Association, 305, 569-575. doi:10.1001/jama.2011.90
[33] Lange, P.H., Hekmat, K., Bosl, G., Kennedy, B.J., Fraley, E.E. (1980) Accelerated growth of testicular cancer after cytoreductive surgery. Cancer, 45, 1498-1506. doi:10.1002/1097-0142(19800315)45:6<1498::AID-CNCR2820450633>3.0.CO;2-7
[34] De Giorgi, V., Massi, D., Gerlini, G., Mannone, F., Quercioli, E. and Carli. P. (2003) Immediate local and regional recurrence after the excision of a polypoid melanoma: Tumor dormancy or tumor activation? Dermatologic Surgery, 29, 664-667. doi:10.1046/j.1524-4725.2003.29163.x
[35] Tseng, W.W., Doyle, J.A., Maguiness, S., Horvai, A.E., Kashani-Sabet, M. and Leong, S.P.L. (2009) Giant cutaneous melanomas: Evidence for primary tumour induced dormancy in metastatic sites? British Medical Journal, Case Reports.
[36] Deylgat, B., Van Rooy, F., Vansteenkiste, F., Devriendt, D. and George, C. (2011) Postsurgery activation of dormant liver micrometastasis: A case report and review of literature. Journal of Gastrointestinal Cancer, 42, 1-4.
[37] Rumyantsev, S. (2010) Hypothesis: Toward the origin of cancer epidemics and pathogenesis. Journal of Carcinogenesis, 9, 1-7.
[38] Quintana, E., Piskounova, E., Shackleton, M., Weinberg, D., Eskiocak, U., Fullen, D.R., Johnson, T.M. and Morrison, S.J. (2012) Human melanoma metastasis in NSG mice correlates with clinical outcome in patients. Science Translational Medicine, 4, 159ra149. doi:10.1126/scitranslmed.3004599
[39] Carmeliet, P. and Rakesh, K.J. (2000) Angiogenesis in cancer and other diseases. Nature, 407, 249-257. doi:10.1038/35025220
[40] Ehrmann, R.L. and Knoth, M. (1968) Choriocarcinoma: Transfilter stimulation of vasoproliferation in the hamster cheek pouch studied by light and electron microscopy. Journal National Cancer Institute, 41, 1329-1341.
[41] Greenblatt, M. and Shubik, P. (1968) Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparant chamber technique. Journal National Cancer Institute, 41, 111-124.
[42] Hanin, L. (2013) Seeing the invisible: How mathematical models uncover tumor dormancy, reconstruct the natural history of cancer, and assess the effects of treatment. Advances in Experimental Medicine and Biology, 734, 261-282. doi:10.1007/978-1-4614-1445-2_12
[43] Folkman, J., Watson, K., Ingber, D. and Hanahan, D. (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339, 58-61. doi:10.1038/339058a0
[44] DeWys, W.D., Malone, W.F., Butrum, R.R., Sestili, M.A. (2006) Clinical trials in cancer prevention. Cancer, 58, 1954-1962. doi:10.1002/1097-0142(19861015)58:8+<1954::AID-CNCR2820581425>3.0.CO;2-A
[45] Tisdale, M.J. (2003) Pathogenesis of cancer cachexia. The Journal of Supportive Oncology, 1, 159-168.
[46] Rumyantsev, S.N. (2013) Human cancer is transmitted via genome. Open Journal of Genetics, 3, 6-11. doi:10.4236/ojgen.2013.31002

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.