Share This Article:

Bacterial UDP-Glucose Hydrolases and P2 Receptor-Mediated Responses to Infection: A Commentary

Abstract Full-Text HTML XML Download Download as PDF (Size:140KB) PP. 100-104
DOI: 10.4236/aid.2013.32016    3,515 Downloads   5,299 Views   Citations

ABSTRACT

UDP-glucose hydrolases are a group of relatively little known membrane-bound or periplasmic enzymes found in Salmonella enterica and E. coli. UDP-glucose is an agonist for a specific P2 receptor (P2Y14) found on epithelial cells and cells associated with innate immunity. It is also recognised as a ‘danger signal’. Cells respond to mechanical damage by releasing UDP-glucose which activates P2Y14 to trigger an innate immune response; it is postulated that a similar response to bacterial infection may be protective against infection. However, the UDP-glucose hydrolases may constitute virulence factors able to abrogate this response by degradation of the released UDP-glucose.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Beacham and J. Headrick, "Bacterial UDP-Glucose Hydrolases and P2 Receptor-Mediated Responses to Infection: A Commentary," Advances in Infectious Diseases, Vol. 3 No. 2, 2013, pp. 100-104. doi: 10.4236/aid.2013.32016.

References

[1] L. Glaser, A. Melo and R. Paul, “Uridine Diphosphate Sugar Hydrolase. Purification of Enzyme and Protein Inhibitor,” Journal of Biological Chemistry, Vol. 242, No. 8, 1967, pp. 1944-1954.
[2] H. C. Neu, “The 5’-Nucleotidase of Escherichia coli. I. Purification and Properties,” Journal of Biological Chemistry, Vol. 242, No. 17, 1967, pp. 3896-3904.
[3] A. R. Garrett, L. A. Johnson and I. R. Beacham, “Isolation, Molecular Characterization and Expression of the UshB Gene of Salmonella typhimurium which Encodes a Membrane-Bound UDP-Sugar Hydrolase,” Molecular Microbiology, Vol. 3, No. 2, 1989, pp. 177-186. doi:10.1111/j.1365-2958.1989.tb01806.x
[4] R. A. Jones, D. M. Burns, D. J. Carruthers and I. R. Beacham, “Membrane Localisation of a UDP-Sugar Hydrolase, in Salmonella, Is by an Uncleaved N-Terminal Signal Peptide,” FEMS Microbiology Letters, Vol. 114, No. 3, 1993, pp. 299-304. doi:10.1111/j.1574-6968.1993.tb06589.x
[5] C. J. Edwards, D. J. Innes, D. M. Burns and I. R. Beacham, “UDP-Sugar Hydrolase Isozymes in Salmonella enterica and Escherichia coli: Silent Alleles of ushA in Related Strains of Group I Salmonella Isolates, and of ushB in Wild-Type and K12 Strains of E. coli, Indicate Recent and Early Silencing Events, Respectively,” FEMS Microbiology Letters, Vol. 114, No. 3, 1993, pp. 293-298. doi:10.1111/j.1574-6968.1993.tb06588.x
[6] D. Innes, I. R. Beacham, C. A. Bevan, M. Douglas and M. W. Laird, “The Cryptic UshA Gene (UshA(c)) in Natural Isolates of Salmonella enterica (Serotype Typhimurium) Has Been Inactivated by a Single Missense Mutation,” Microbiology, Vol. 147, Pt. 7, 2001, pp. 1887-1896.
[7] D. M. Burns and I. R. Beacham, “Identification and Sequence Analysis of a Silent Gene (ushA0) in Salmonella typhimurium,” Journal of Molecular Biology, Vol. 192, No. 2, 1986, pp. 163-175. doi:10.1016/0022-2836(86)90358-X
[8] W. Schroder, M. Burger, C. Edwards, M. Douglas and D. Innes, “The Escherichia coli Orthologue of the Salmonella ushB Gene (ushB(c)) Produces Neither UDP-Sugar Hydrolase Activity Nor Detectable Protein, But Has an Identical Sequence to That of Escherichia coli cdh,” FEMS Microbiology Letters, Vol. 203, No. 1, 2001, pp. 63-68. doi:10.1111/j.1574-6968.2001.tb10821.x
[9] E. Yagil and I. R. Beacham, “Uptake of Adenosine 5’-Monophosphate by Escherichia coli,” Journal of Bacteriology, Vol. 121, No. 2, 1975, pp. 401-405.
[10] M. P. Abbracchio, G. Burnstock, J. M. Boeynaems, E. A. Barnard and J. L. Boyer, “International Union of Pharmacology LVIII: Update on the P2Y G Protein-coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy,” Pharmacological Reviews, Vol. 58, No. 3, 2006, pp. 281-341. doi:10.1124/pr.58.3.3
[11] E. R. Lazarowski, R. C. Boucher and T. K. Harden, “Mechanisms of Release of Nucleotides and Integration of Their Action as P2X- and P2Y-Receptor Activating Molecules,” Molecular Pharmacology, Vol. 64, No. 4, 2003, pp. 785-795. doi:10.1124/mol.64.4.785
[12] J. K. Chambers, L. E. Macdonald, H. M. Sarau, R. S. Ames and K Freeman, “A G Protein-Coupled Receptor for UDP-Glucose,” Journal of Biological Chemistry, Vol. 275, No. 15, 2000, pp. 10767-10771. doi:10.1074/jbc.275.15.10767
[13] M. P. Abbracchio, J. M. Boeynaems, E. A. Barnard, J. L. Boyer and C. Kennedy, “Characterization of the UDP-Glucose Receptor (Re-Named Here the P2Y14 Receptor) Adds Diversity to the P2Y Receptor Family,” Trends in Pharmacological Sciences, Vol. 24, No. 2, 2003, pp. 52-55. doi:10.1016/S0165-6147(02)00038-X
[14] R. L. Carter, I. P. Fricks, M. O. Barrett, L. E. Burienek and Y Zhou, “Quantification of Gi-mediated Inhibition of Adenylyl Cyclase Activity Reveals That UDP Is a Potent Agonist of the Human P2Y14 Receptor,” Molecular Pharmacology, Vol. 76, No. 6, 2009, pp. 1341-1348. doi:10.1124/mol.109.058578
[15] A. Das, H. Ko, L. E. Burienek, M. O. Barrett and T. K. Harden, “Human P2Y(14) Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5’-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups,” Journal of Medicinal Chemistry, Vol. 53, No. 1, 2010, pp. 471-480. doi:10.1021/jm901432g
[16] M. R. Laughlin, W. A. Petit Jr., J. M. Dizon, R. G. Shulman and E. J. Barrett, “NMR Measurements of in Vivo Myocardial Glycogen Metabolism,” Journal of Biological Chemistry, Vol. 263, No. 5, 1988, pp. 2285-2291.
[17] E. R. Lazarowski, D. A. Shea, R. C. Boucher and T. K. Harden, “Release of Cellular UDP-Glucose as a Potential Extracellular Signaling Molecule,” Molecular Pharmacology, Vol. 63, No. 5, 2003, pp. 1190-1197. doi:10.1124/mol.63.5.1190
[18] T. Arase, H. Uchida, T. Kajitani, M. Ono and K. Tamaki, “The UDP-Glucose Receptor P2RY14 Triggers Innate Mucosal Immunity in the Female Reproductive Tract by Inducing IL-8,” Journal of Immunology, Vol. 182, No. 11, 2009, pp. 7074-7084. doi:10.4049/jimmunol.0900001
[19] D. J. Moore, P. R. Murdock, J. M. Watson, R. L Faull and H. J. Waldvogel, “PR105, a Novel Gi/o-Coupled UDP-Glucose Receptor Expressed on Brain Glia and Peripheral Immune Cells, Is Regulated by Immunologic Challenge: Possible Role in Neuroimmune Function,” Brain Research Molecular Brain Research, Vol. 118, No. 1-2, 2003, pp. 10-23. doi:10.1016/S0169-328X(03)00330-9
[20] Z. Zhang, Z. Wang, H. Ren, M. Yue and K. Huang, “P2Y(6) Agonist Uridine 5’-Diphosphate Promotes Host Defense against Bacterial Infection via Monocyte Chemoattractant Protein-1-Mediated Monocytes/Macrophages Recruitment,” Journal of Immunology, Vol. 186, No. 9, 2011, pp. 5376-5387. doi:10.4049/jimmunol.1002946
[21] W. G. Junger, “Immune Cell Regulation by Autocrine Purinergic Signalling,” Nature Reviews Immunology, Vol. 11, No. 3, 2011, pp. 201-212. doi:10.1038/nri2938
[22] B. C. Lee, T. Cheng, G. B. Adams, E. C. Attar and N. Miura, “P2Y-Like Receptor, GPR105 (P2Y14), Identifies and Mediates Chemotaxis of Bone-Marrow Hematopoietic Stem Cells,” Genes & Gevelopment, Vol. 17, No. 13, 2003, pp. 1592-1604. doi:10.1101/gad.1071503
[23] T. Matsuguchi, “Mast Cells as Critical Effectors of Host Immune Defense against Gram-Negative Bacteria,” Current Medicinal Chemistry, Vol. 19, No. 10, 2012, pp. 1432-1442. doi:10.2174/092986712799828319
[24] Z. G. Gao, Y. Ding and K. A. Jacobson, “UDP-Glucose Acting at P2Y14 Receptors Is a Mediator of Mast Cell Degranulation,” Biochemical Pharmacology, Vol. 79, No. 6, 2010, pp. 873-879. doi:10.1016/j.bcp.2009.10.024
[25] J. I. Sesma, S. M. Kreda, N. Steinckwich-Besancon, H. Dang and R. Garcia-Mata, “The UDP-Sugar-Sensing P2Y(14) Receptor Promotes Rho-Mediated Signaling and Chemotaxis in Human Neutrophils,” American Journal of Physiology and Cell Physiology, Vol. 303, No. 5, 2012, pp. C490-C498. doi:10.1152/ajpcell.00138.2012
[26] L. Skelton, M. Cooper, M. Murphy and A. Platt, “Human Immature Monocyte-Derived Dendritic Cells Express the G Protein-Coupled Receptor GPR105 (KIAA0001, P2Y14) and Increase Intracellular Calcium in Response to Its Agonist, Uridine Diphosphoglucose,” Journal of Immunology, Vol. 171, No. 4, 2003, pp. 1941-194.
[27] A. Shin, T. Toy, S. Rothenfusser, N. Robson and J. Vorac, “P2Y Receptor Signaling Regulates Phenotype and IFN-Alpha Secretion of Human Plasmacytoid Dendritic Cells,” Blood, Vol. 111, No. 6, 2008, pp. 3062-3069. doi:10.1182/blood-2007-02-071910
[28] K. Freeman, P. Tsui, D. Moore, P. C. Emson and L. Vawter, “Cloning, Pharmacology, and Tissue Distribution of G-Protein-Coupled Receptor GPR105 (KIAA0001) Rodent Orthologs,” Genomics, Vol. 78, No. 3, 2001, pp. 124-128. doi:10.1006/geno.2001.6662
[29] M. E. Charlton, A. S. Williams, M. Fogliano, P. M. Sweetnam and R. S. Duman, “The Isolation and Characterization of a Novel G Protein-Coupled Receptor Regulated by Immunologic Challenge,” Brain Research, Vol. 764, No. 1-2, 1997, pp. 141-148. doi:10.1016/S0006-8993(97)00438-1
[30] M. Fumagalli, R. Brambilla, N. D’Ambrosi, C. Volenté- and M. Matteoli, “Nucleotide-Mediated Calcium Signaling in Rat Cortical Astrocytes: Role of P2X and P2Y Receptors,” Glia, Vol. 43, No. 3, 2003, pp. 218-203. doi:10.1002/glia.10248
[31] S. Rivest, “Regulation of Innate Immune Responses in the Brain,” Nature Reviews Immunology, Vol. 9, No. 6, 2009, pp. 429-439. doi:10.1038/nri2565
[32] M. Kinoshita, K. Nasu-Tada, K. Fujishita, K. Sato and S. Koizumi, “Secretion of Matrix Metalloproteinase-9 from Astrocytes by Inhibition of Tonic P2Y(14)-Receptor-Mediated Signal(s),” Cellular and Molecular Neurobiology, Vol. 33, No. 1, 2013, pp. 47-58. doi:10.1007/s10571-012-9869-4
[33] S. J. Owen, M. Batzloff, F. Chehrehasa, A. Meedeniya and Y. Casart, “Nasal-Associated Lymphoid Tissue and Olfactory Epithelium as Portals of Entry for Burkholderia pseudomallei in Murine Melioidosis” Journal of Infectious Diseases, Vol. 199, No. 12, 2009, pp. 1761-1770. doi:10.1086/599210
[34] F. W. van Ginkel, J. R. McGhee, J. M. Watt, A. Campos-Torres and L. A. Parish, “Pneumococcal Carriage Results in Ganglioside-Mediated Olfactory Tissue Infection,” Proceedings of the National Academy of Science of America United States, Vol. 100, No. 24, 2003, pp. 14363-14367. doi:10.1073/pnas.2235844100
[35] K. S. Kim, “Mechanisms of Microbial Traversal of the Blood-Brain Barrier,” Nature Reviews Microbiology, Vol. 6, No. 8, 2008, pp. 625-634. doi:10.1038/nrmicro1952
[36] K. Kristensson, “Microbes’ Roadmap to Neurons,” Nature Reviews Neuroscience, Vol. 12, No. 6, 2011, pp. 345-357. doi:10.1038/nrn3029
[37] S. P. Brown, D. M. Cornforth and N. Mideo, “Evolution of Virulence in Opportunistic Pathogens: Generalism, Plasticity, and Control,” Trends in Microbiology, Vol. 20, No. 7, 2012, pp. 336-342. doi:10.1016/j.tim.2012.04.005
[38] J. L. Thomas, R. M. Slawson and W. D. Taylor, “Salmonella Serotype Diversity and Seasonality in Urban and Rural Streams,” Journal of Applied Microbiology, Vol. 114, No. 3, 2012, pp. 907-922. doi:10.1111/jam.12079

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.