Nanoparticles Production and Inclusion in S. aureus Incubated with Polyurethane: An Electron Microscopy Analysis

Abstract

This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms; it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus.

Share and Cite:

L. Didenko, G. Avtandilov, N. Shevlyagina, N. Shustrova, T. Smirnova, I. Lebedenko, R. Curia, C. Savoia, F. Tatti and M. Milani, "Nanoparticles Production and Inclusion in S. aureus Incubated with Polyurethane: An Electron Microscopy Analysis," Open Journal of Medical Imaging, Vol. 3 No. 2, 2013, pp. 69-73. doi: 10.4236/ojmi.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. V. Didenko, G. A. Avtandilov, N. V. Shevlyagina, T. A. Smirnova, I. Y. Lebedenko, F. Tatti, C. Savoia, G. Evans and M. Milani, “Biodestruction of Polyurethane by Staphylococcus Aureus (an Investigation by SEM, TEM and FIB),” In: A. Méndez-Vilas, Ed., Current Microscopy Contributions to Advances in Science and Technology, Vol. 1, Formatex Research Center, Badajoz, 2012, pp. 323-334.
[2] G. A. Pkhakadze, “Morphological and Biochemical Aspects of Biodegradation of Polymers,” 1986.
[3] F. Cappitelli and C. Sorlini, “Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage,” Applied Environmental Microbiology, Vol. 74, No. 3, 2008, pp. 564-569. doi:10.1128/AEM.01768-07
[4] Ya. V. Zachinyaev, I. I. Miroshnichenko and A. V. Zachinyaeva, “Microbial Degradation of Polyurethane,” Russian Journal of Applied Chemistry, Vol. 82, No. 7, 2009, pp. 1321-1323. doi:10.1134/S1070427209070313
[5] J. A. Aas, B. J. Paster, L. N. Stokes, I. Olsen and F. E. Dewhirst, “Defining the Normal Bacterial Flora of the Oral Cavity,” Journal of Clinical Microbiology, Vol. 43, No. 11, 2005, pp. 5721-5732. doi:10.1128/JCM.43.11.5721-5732.2005
[6] M. Yu. Ogorodnikov, V. N. Tsaryov, R. Kh. Sulemova, “The Clinico-Microbiological Characterization of the Dynamics of the Microbial Colonization of Polyurethane and Acrylic Plastic-Based Removable Dental Prostheses,” Ruskii Stomatological Journal, Vol. 83, No. 6, 2007, pp. 20-22.
[7] R. Bhola, S. M. Bhola, H. Liang and B. Mishra, “Biocompatible Denture Polymers—A Review,” Trends in Biomaterials and Artificial Organs, Vol. 23, No. 3, 2010, pp. 129-136.
[8] G. T. Howard, “Biodegradation of Polyurethane: A Review,” International Biodeterioration & Biodegradation, Vol. 49, No. 4, 2002, pp. 245-252.
[9] A. J. Smith, M. S. Jackson and J. Bagg, “The Ecology of Staphylococcus Species in the Oral Cavity,” Journal of Medical Microbiology, Vol. 50, No. 11, 2001, pp. 940-946.
[10] A. D. Pye, D. E. A. Lockhart, M. P. Dawson, C. A. Murray and A. Y. Smith, “A Review of Dental Implants and Infection,” Journal of hospital infection, Vol. 72, No. 2, 2009, pp. 104-110. doi:10.1016/j.jhin.2009.02.010
[11] C. G. Gemmell, “Coagulase-Negative Staphylococci,” Journal of Medical Microbiology, Vol. 22, No. 4, 1986, pp. 285-295. doi:10.1099/00222615-22-4-285
[12] J. W. Costerton, R. T. Irvin, K.-J. Cheng and I. W. Sutherland, “The Role of Bacterial Surface Structures in Pathogenesis,” Critical Reviews in Microbiology, Vol. 8, No. 4, 1981, pp. 303-338. doi:10.3109/10408418109085082
[13] M. D. Candia Carnevali and M. Milani, “Electron and Ion Microscopy and Micromanipulation: Common Principles and Advanced Methods in Applied Sciences,” Proceedings of Summer School 2008 & 2009, Esculapio, 8 September 2008-8 October 2008, pp. 129-186.
[14] M. Milani, D. Drobne and F. Tatti, “How to Study Biological Samples by FIB/SEM?” In: A. Méndez-Vilas and J. Díaz, Eds., Modern Research and Educational Topics in Microscopy, Formatex Research Center, Badajoz, 2007, pp. 787-794.
[15] M. Milani, D. Drobne and F. Tatti, “Atlas of FIB/SEM in Soft Materials and Life Sciences,” Aracne Publishing, Rome, 2006.
[16] L. V. Didenko, G. A. Avtandilov, N. V. Shevlyagina, T. A. Smirnova, I. Y. Lebedenko, F. Tatti, C. Savoia, G. Evans and M. Milani, “Biodestruction of Polyurethane by Staphylococcus Aureus (an Investigation by SEM, TEM and FIB),” FEI Dual Beam User-Club Meeting, Eindhoven, April 2012.
[17] C. Schaudinn, A. Gorur, D. Keller, P. P. Sedghizadeh and J. W. Costerton, “Periodontitis: An Archetypical Biofilm Disease,” Journal of the American Dental Association, Vol. 140, No. 8, 2009, pp. 978-986.
[18] C. Buzea, I. I. Pacheco Blandino and K. Robbie, “Nanomaterials and Nanoparticles: Sources and Toxicity,” Biointerphases, Vol. 2, No. 4, 2007, pp. MR17-MR172. doi:10.1116/1.2815690
[19] A. Jermy, “Evolution: Bacterial Endocytosis Uncovered,” Nature Reviews Microbiology, Vol. 8, No. 8, 2010, pp. 534-535. doi:10.1038/nrmicro2408
[20] J. R. McIntosh, “Electron Microscopy of Cells: A New Beginning for a New Century,” The Journal of Cell Biology, Vol. 153, No. 6, 2001, pp. F25-F32. doi:10.1083/jcb.153.6.F25
[21] P. K. Wallace, B. Arey and W. F. Mahaffee, “Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy,” Micron, Vol. 42, No. 6, 2011, pp. 579-585. doi:10.1016/j.micron.2011.02.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.