Electrocortical Activity Differences Related to Saccadic Movements between Bipolar Patients and Healthy Subjects
Washington Adolfo Batista, Juliana Bittencourt, José Inácio Salles, Silmar Teixeira, Luis F. Basile, Antonio Egidio Nardi, Claudia Diniz, Fernanda Novis, Luciana Angélica Silveira, Rafael de Assis da Silva, Amanda de Lima Teixeira, Elie Cheniaux, Flávio Kapczinki, Mauricio Cagy, Roberto Piedade, Bruna Velasques, Pedro Ribeiro
Anxiety & Depression Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil.
Anxiety & Depression Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil;.
Biomedical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil.
Division of Neurosurgery, University of S?o Paulo Medical School, S?o Paulo, Brazil.
Laboratory of Molecular Psychiatry, Bipolar Disorders Program and INCT Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Panic & Respiration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
School of Physical Education, Bioscience Department (EEFD/UFRJ), Rio de Janeiro, Brazil.
DOI: 10.4236/nm.2013.42010   PDF    HTML     4,590 Downloads   6,376 Views  


Objective: The present study aimed to investigate and to compare the electrophysiological changes in bipolar patients and healthy subjects during the execution of a saccade task. Materials and Methods: The subjects had to respond to a fixed visual stimulus presented by a LEDs bar. We executed an ANOVA (one-way) and post hoc Scheffé test to examine the difference of absolute alpha power and reaction time among four groups: control, depression, manic and euthymic. We observed the frontal, parietal and occipital regions. The paired t test was realized on each electrode and group to compare the pre and post moment in the task. Results: We observed a statistical difference among the groups for the behavioral variable—saccade reaction time. For the electrophysiological variable—absolute alpha power, we did not find significant difference between the moments (pre and post stimulus presentation) for none of the electrodes of each bipolar group. However, the results pointed out to a difference between the moments for F3, P3, O1 and O2 electrodes for control group. Conclusion: We cannot affirm that the task influences the cortical activity of the patients. It is possible that the method used to analyze the data is not the adequate. The time-frequency analysis could be better to analyze the present data. We also observed that the absolute alpha power could be considered a marker of bipolar disorder, but not of the different states (i.e., mania, depression, euthymia).

Share and Cite:

W. Batista, J. Bittencourt, J. Salles, S. Teixeira, L. Basile, A. Nardi, C. Diniz, F. Novis, L. Silveira, R. Silva, A. Teixeira, E. Cheniaux, F. Kapczinki, M. Cagy, R. Piedade, B. Velasques and P. Ribeiro, "Electrocortical Activity Differences Related to Saccadic Movements between Bipolar Patients and Healthy Subjects," Neuroscience and Medicine, Vol. 4 No. 2, 2013, pp. 63-70. doi: 10.4236/nm.2013.42010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Jagla, M. Jergelová and I. Riecansky, “Saccadic Eye Movement Related Potentials,” Physiological Research, Vol. 56, 2007, pp. 707-713.
[2] S. B. Hutton, “Cognitive Control of Saccadic Eye Movements,” Brain and Cognition, Vol. 68, No. 3, 2008, pp. 327-340. doi:10.1016/j.bandc.2008.08.021
[3] G. K. Thaker, “Neurophysiological Endophenotypes across Bipolar and Schizophrenia Psychosis,” Schizophrenia Bulletin, Vol. 34, No. 4, 2008, pp. 760-773. doi:10.1093/schbul/sbn049
[4] M. S. Harris, J. L. Reilly, M. E. Thase, M. S. Keshavan and J. A. Sweeney, “Response Suppression Deficits in Treatment-Naive First-Episode Patients with Schizophrenia, Psychotic Bipolar Disorder and Psychotic Major Depression,” Psychiatry Research, Vol. 170, No. 2, 2009, pp. 150-156. doi:10.1016/j.psychres.2008.10.031
[5] M. J. Thurtell, R. L. Tomsak and R. J. Leigh, “Disorders of Saccades,” Current Neurology and Neuroscience Reports, Vol. 7, No. 5, 2007, pp. 407-416. doi:10.1007/s11910-007-0063-x
[6] B. Luna, K. Velanova and C. F. Geier, “Development of Eye-Movement Control,” Brain and Cognition, Vol. 68, No. 3, 2008, pp. 293-308. doi:10.1016/j.bandc.2008.08.019
[7] C. Cartier, J. Bittencourt, C. Peressutti, S. Machado, F. Paes, A. T. Sack, L. F. Basile, S. Teixeira, J. I. Salles, A. E. Nardi, M. Cagy, R. Piedade, O. Arias-Carrión, B. Velasques and P. Ribeiro, “Premotor and Occipital Theta Asymmetries as Discriminators of Memory- and Stimulus-Guided Tasks,” Brain Research Bulletin, Vol. 87, No. 1, 2012, pp. 103-108. doi:10.1016/j.brainresbull.2011.10.013
[8] A. Özerdem, B. Güntekin, I. Atagün, B. Turp and E. Basar, “Reduced Long Distance Gamma (28/48 Hz) Coherence in Euthymic Patients with Bipolar Disorder,” Journal of Affective Disorders, Vol. 132, No. 3, 2011, pp. 325-332. doi:10.1016/j.jad.2011.02.028
[9] R. Oldfield, “The Assessment and Analysis of Handedness: The Edinburgh Inventory,” Neuropsychologia, Vol. 9, No. 1, 1971, pp. 97-113. doi:10.1016/0028-3932(71)90067-4
[10] T. Ergenoglu, T. Demiralp, Z. Bayraktaroglu, M. Ergen, H. Beydagi and Y. Uresin, “Alpha Rhythm of the EEG Modulates Visual Detection Performance in Humans,” Cognitive Brain Research, Vol. 20, No. 3, 2004, pp. 376-383. doi:10.1016/j.cogbrainres.2004.03.009
[11] T. A. Rihs, C. M. Michel and G. Thut, “Mechanisms of Selective Inhibition in Visual Spatial Attention Are Indexed by Alpha-Band EEG Synchronization,” European Journal of Neuroscience, Vol. 25, No. 2, 2007, pp. 603-610. doi:10.1111/j.1460-9568.2007.05278.x
[12] W. Szurhaj, P. Derambure, E. Labyt, F. Cassim, J. Bourriez, J. Isnard, J. D. Guieu and F. Mauquière, “Basic Mechanisms of Central Rhythms Reactivity to Preparation and Execution of a Voluntary Movement: A Stereoelectroencephalographic Study,” Clinical Neurophysiology, Vol. 114, No. 1, 2003, pp. 107-119. doi:10.1016/S1388-2457(02)00333-4
[13] S. Haegens, B. F. Handel and O. Jensen, “Top-Down Controlled Alpha Band Activity in Somatosensory Areas Determines Behavioral Performance in a Discrimination Task,” The Journal of Neuroscience, Vol. 31, No. 14, 2011, pp. 5197-5204. doi:10.1523/JNEUROSCI.5199-10.2011
[14] R. Anghinah, P. Caramelli, D. Y. Takahashi, R. Nitrini and K. Sameshima, “Estudo da Coerência do Eletroencefalograma na Banda de Frequência Alfa em Indivíduos Adultos Normais. Resultados Preliminares em 10 Casos,” Arquivos de Neuro-Psiquiatria, Vol. 63, No. 1, 2005, pp. 83-86. doi:10.1590/S0004-282X2005000100015
[15] E. Niedermeyer and F. Silva, “Electroencephalography: Basic Principles, Clinical Applications and Related Fields,” Urban & Schwarzenberg, Baltimore, 2005.
[16] L. Lorenzo-López, E. Amenedo, R. D. Pascual-Marqui and F. Cadaveira, “Neural Correlates of Age-Related Visual Search Decline: A Combined ERP and sLORETA Study,” Neuroimage, Vol. 41, No. 511, 2008, p. 24.
[17] B. Velasques, J. Bittencourt, C. Diniz, et al., “Changes in Saccadic Eye Movement (SEM) and Quantitative EEG Parameter in Bipolar Patients,” Journal of Affective Disorders, Vol. 145, No. 3, 2012, pp. 378-385. doi:10.1016/j.jad.2012.04.049
[18] E. Bora, M. Yucel and C. Pantelis, “Cognitive Endophenotypes of Bipolar Disorder: A Meta-Analysis of Neuropsychological Deficits in Euthymic Patients and Their First-Degree Relatives,” Journal of Affective Disorders, Vol. 113, No. 1, 2009, pp. 1-20. doi:10.1016/j.jad.2008.06.009
[19] C. Pierrot-Deseilligny, R. M. Müri, T. Nyffeler and D. Milea, “The Role of the Human Dorsal Lateral Prefrontal Cortex in Ocular Motor Behavior,” Annals of the New York Academy of Science, Vol. 1039, 2005, pp. 239-251. doi:10.1196/annals.1325.023
[20] Z. Kapoula, Q. Yang, O. Coubard, G. Daunys and C. Orssaud, “Role of the Posterior Parietal Cortex in the Initiation of Saccades and Vergence: Right/Left Functional Asymmetry,” Annals of the New York Academy of Science, Vol. 1039, 2005, pp. 184-197. doi:10.1196/annals.1325.018
[21] L. S. Simó, C. M. Krisky and J. A. Sweeney, “Functional Neuroanatomy of Anticipatory Behavior: Dissociation between Sensory-Driven and Memory-Driven Systems,” Cerebral Cortex, Vol. 15, No. 12, 2005, pp. 1982-1991. doi:10.1093/cercor/bhi073
[22] V. Romei, J. Gross and G. Thut, “On the Role of Prestimulus Alpha Rhythms over Occipitoparietal Areas in Visual Input Regulation: Correlation or Causation?” The Journal of Neuroscience, Vol. 30, No. 25, 2010, pp. 8692-8697. doi:10.1523/JNEUROSCI.0160-10.2010
[23] S. B. Merriam, R. S. Caffarella and L. M. Baumgartner, “Learning in Adulthood,” 3rd Edition, John Wiley & Sons, San Francisco, 2007.
[24] S. E. Bouvier, “Top-Down Influences of Spatial Attention in Visual Cortex,” The Journal of Neuroscience, Vol. 29, No. 6, 2009, pp. 1597-1598. doi:10.1523/JNEUROSCI.5611-08.2009

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.