Steam Reforming of Ethanol over CoMg/SBA-15 Catalysts

DOI: 10.4236/mrc.2013.22A003   PDF   HTML     4,227 Downloads   7,538 Views   Citations

Abstract

Hydrogen production through steam reforming of ethanol (SRE) over Mg modified Co-based catalysts supported on mesoporous SBA-15 was studied herein to evaluate the catalytic activity and the behavior of coke deposition. The CoyMgx/SBA-15 catalysts are obtained according to the steps of consecutive impregnation of Mg (x = 5 and 10 wt%) to be incorporated on SBA-15 and then follow the loading of Co (y = 10 and 20 wt%) using the incipient wetness impregnation method. The catalysts are characterized by using X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and BET techniques. Also, the spent catalysts are further characterized by using XRD and TEM. The catalytic activity of the SRE is evaluated in a fixed-bed reactor under 22,000 h-1 GHSV and with an H2O/EtOH molar ratio of 13. All the CoyMgx/SBA-15 catalysts present a mesoporous structure, even after the SRE reaction. The optimum catalyst of Co20Mg5/SBA-15-H650 comes from the high loading of Co and high reduction temperature pretreatment, which show a high catalytic activity and stability at 550°C with a hydrogen yield (YH2) up to 5.78 and CO selectivity around 3.10%.

Share and Cite:

Chiou, J. , Yang, S. , Lai, C. , Kung, H. , Tang, C. and Wang, C. (2013) Steam Reforming of Ethanol over CoMg/SBA-15 Catalysts. Modern Research in Catalysis, 2, 13-21. doi: 10.4236/mrc.2013.22A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. D. Cortright, R. R. Davda and J. A. Dumesic, “Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water,” Nature, Vol. 418, No. 6901, 2002, pp. 964-967. doi:10.1038/nature01009
[2] D. K. Liguras, D. I. Kondarides and X. E. Verykios, “Production of Hydrogen For Fuel Cells by Steam Reforming of Ethanol over Supported Noble Metal Catalysts,” Applied Catalysis B: Environmental, Vol. 43, No. 4, 2003, pp. 345-354. doi:10.1016/S0926-3373(02)00327-2
[3] P. Ramirez de la Piscina and N. Homs, “Use of Biofuels to Produce Hydrogen (Reformation Processes),” Chemical Society Review, Vol. 37, No. 11, 2008, pp. 2459-2467. doi:10.1039/b712181b
[4] F. Haga, T. Nakajima, H. Miya and S. Mishima, “Catalytic Properties of Supported Cobalt Catalysts for Steam Reforming of Ethanol,” Catalysis Letters, Vol. 48, No. 3- 4, 1997, pp. 223-227. doi:10.1023/A:1019039407126
[5] J. Llorca, N. Homs, J. Sales and P. Ramirez de la Piscina, “Ef?cient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,” Journal of Catalysis, Vol. 209, No. 2, 2002, pp. 306-317. doi:10.1006/jcat.2002.3643
[6] M. C. Batista, R. K. S. Santos, E. M. Assaf, J. M. Assaf and E. A. Ticianelli, “High Ef?ciency Steam Reforming of Ethanol by Cobalt-Based Catalysts,” Journal of Power Sources, Vol. 134, No. 1, 2004, pp. 27-32. doi:10.1016/j.jpowsour.2004.01.052
[7] J. Llorca, P. Ramirez de la Piscina, J.-A. Dalmon, J. Sales and N. Homs, “CO-Free Hydrogen from Steam-Reforming of Bioethanol over ZnO-Supported Cobalt Catalysts Effect of the Metallic Precursor,” Applied Catalysis B: Environmental, Vol. 43, No. 4, 2003, pp. 355-369. doi:10.1016/S0926-3373(02)00326-0
[8] J. M. Pigos, C. J. Brooks, G. Jacobs and B. H. Davis, “Low Temperature Water-gas Shift: The Effect of Alkali Doping on the C-H Bond of Formate over Pt/ZrO2 Catalysts,” Applied Catalysis A: General, Vol. 328, No. 1, 2007, pp. 14-26. doi:10.1016/j.apcata.2007.04.001
[9] C. H. Wang, K. F. Ho, J. Y. Z. Chiou, C. L. Lee, S. Y. Yang, C. T. Yeh and C. B. Wang, “Oxidative Steam Reforming of Ethanol over PtRu/ZrO2 Catalysts Modi?ed with Sodium and Magnesium,” Catalysis Communications, Vol. 12, No. 10, 2011, pp. 854-858. doi:10.1016/j.catcom.2011.02.002
[10] Z. Cheng, Q. Wu, J. Li and Q. Zhu, “Effects of Promoters and Preparation Procedures on Reforming of Methane with Carbon Dioxide over Ni/Al2O3 Catalyst,” Catalalysis Today, Vol. 30, No. 1-3, 1996, pp. 147-155. doi:10.1016/0920-5861(95)00005-4
[11] D. H. Olson, G. T. Kokotailo, S. L. Lawton and W. M. Meler, “Crystal Structure and Structure-Related Properties of ZSM-5,” The Journal of Physical Chemistry, Vol. 85, No. 15, 1981, pp. 2238-2243. doi:10.1021/j150615a020
[12] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism,” Nature, Vol. 359, No. 6397, 1992, pp. 710-712. doi:10.1038/359710a0
[13] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science, Vol. 279, No. 5350, 1998, pp. 548-552. doi:10.1126/science.279.5350.548
[14] A. J. Vizcaíno, A. Carrero and J. A. Calles, “Hydrogen Production by Ethanol Steam Reforming over Cu-Ni Supported Catalysts” International Journal of Hydrogen Energy, Vol. 32, No. 10-11, 2007, pp. 1450-1461. doi:10.1016/j.ijhydene.2006.10.024
[15] A. Carrero, J. A. Calles and A. J. Vizcaíno, “Hydrogen Production by Ethanol Steam Reforming over Cu-Ni/ SBA-15 Supported Catalysts Prepared by Direct Synthesis and Impregnation,” Applied Catalysis A: General, Vol. 327, No. 1, 2007, pp. 82-94. doi:10.1016/j.apcata.2007.04.030
[16] A. J. Vizcaíno, A. Carrero and J. A. Calles, “Ethanol Steam Reforming on Mg- and Ca-modi?ed Cu-Ni/SBA-15 Catalysts,” Catalysis Today, Vol. 146, No. 1-2, 2009, pp. 63- 70. doi:10.1016/j.cattod.2008.11.020
[17] J. A. Calles, A. Carrero and A. J. Vizcaíno, “Ce and La Modi?cation of Mesoporous Cu-Ni/SBA-15 Catalysts for Hydrogen Production through Ethanol Steam Reforming,” Microporous and Mesoporous Materials, Vol. 119, No. 1-3, 2009, pp. 200-207. doi:10.1016/j.micromeso.2008.10.028
[18] A. Carrero, J. A. Calles and A. J. Vizcaino, “Effect of Mg and Ca Addition on Coke Deposition over Cu-Ni/SiO2 Catalysts for Ethanol Steam Reforming,” Chemical Engineering Journal, Vol. 163, No. 3, 2010, pp. 395-402. doi:10.1016/j.cej.2010.07.029
[19] K. Wang, X. Li, S. Ji, X. Shi and J. Tang, “Effect of CexZr1-xO2 Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane,” Energy & Fuels, Vol. 23, No. 1, 2009, pp. 25-31. doi:10.1021/ef800553b
[20] H. Wang, Y. Liu, L. Wang and Y. Qin, “Study on the Carbon Deposition in Steam Reforming of Ethanol over Co/CeO2 Catalyst,” Chemical Engineering Journal, Vol. 145, No. 1, 2008, pp. 25-31. doi:10.1016/j.cej.2008.02.021
[21] B. Huang, X. Li, S. Ji, B. Lang, F. Habimana and C. Li, “Effect of MgO Promoter on Ni-based SBA-15 Catalysts for Combined Steam and Carbon Dioxide Reforming of Methane,” Journal of Natural Gas Chemistry, Vol. 17, No. 3, 2008, pp. 225-231. doi:10.1016/S1003-9953(08)60055-9
[22] W. Liu, S. Y. Lai, H. X. Dai, S. J. Wang, H. Z. Sun and C. T. Au, “MgO-Modified VOx/SBA-15 as Catalysts for the Oxidative Dehydrogenation of n-Butane,” Catalysis Today, Vol. 131, No. 1-4, 2008, pp. 450-456. doi:10.1016/j.cattod.2007.10.054
[23] M. A. Zamudio, S. Bensaid, D. Fino and N. Russo, “Influence of the MgCo2O4 Preparation Method on N2O Catalytic Decompositio,” Industrial & Engineering Chemistry Research, Vol. 50, No. 5, 2011, pp. 2622-2627. doi:10.1021/ie100658w
[24] Y. Sharma, N. Sharma, G. V. Subba Rao and B. V. R. Chowdari, “Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-ion batteries,” Solid State Ionics, Vol. 179, No. 15-16, 2008, pp. 587-597. doi:10.1016/j.ssi.2008.04.007
[25] V. R. Choudhary, K. C. Mondal and T. V. Choudhary, “CO2 Reforming of Methane to Syngas over CoOx/MgO Supported on Low Surface Area Macroporous Catalyst Carrier: Influence of Co Loading and Process Conditions,” Industrial & Engineering Chemistry Research, Vol. 45, No. 13, 2006, pp. 4597-4602. doi:10.1021/ie060260a
[26] C. B. Wang, C. C. Lee, J. L. Bi, J. Siang, J. Y. Liu and C. T. Yeh, “Study on the Steam Reforming of Ethanol over Cobalt Oxides,” Catalysis Today, Vol. 146, No. 1-2, 2009, pp. 76-81. doi:10.1016/j.cattod.2008.12.010
[27] H. Y. Wang and E. Ruckenstein, “CO2 Reforming of CH4 over Co/MgO Solid Solution Catalysts—Effect of Calcination Temperature and Co loading,” Applied Catalysis A: General, Vol. 209, No. 1-2, 2001, pp. 207-215. doi:10.1016/S0926-860X(00)00753-5
[28] A. A. Nayeb-Hashemi and J. B. Clark, “The Co-Mg (Cobalt-Magnesium) System,” Bulletin of Alloy Phase Diagrams, Vol. 8, No. 4, 1987, pp. 352-354.
[29] E. Ruckenstein and H. Y. Wang, “Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts,” Journal of Catalysis, Vol. 205, No. 2, 2002, pp. 289-293. doi:10.1006/jcat.2001.3458
[30] I. Suelves, M. J. Lázaro, R. Moliner, B. M. Corbella and J. M. Palacios, “Hydrogen Production by Thermo Catalytic Decomposition of Methane on Ni-Based Catalysts: In?uence of Operating Conditions on Catalyst Deactivation and Carbon Characteristics,” International Journal of Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1555-1567. doi:10.1016/j.ijhydene.2004.10.006

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.