Highly Efficient Method for Synthesis of N-Amino-2-Pyridone Derivatives in the Presence of Catalysts such as Magnesium Oxide (MgO) and Bismuth(III) Nitrate Pentahydrate (Bi(NO3)3·5H2O)


Magnesium oxide (MgO) and bismuth(III) nitrate pentahydrate as highly effective catalysts which have catalyzed the three-component reaction of cyanoacetic acid hydrazide, aldehydes and malononitrile to prepare of the corresponding N-amino-2-pyridones. These catalysts are inexpensive and easily obtained, stable and storable, easily recycled and reused for several cycles with consistent activity.

Share and Cite:

Seifi, M. , Rabori, M. and Sheibani, H. (2013) Highly Efficient Method for Synthesis of N-Amino-2-Pyridone Derivatives in the Presence of Catalysts such as Magnesium Oxide (MgO) and Bismuth(III) Nitrate Pentahydrate (Bi(NO3)3·5H2O). Modern Research in Catalysis, 2, 8-12. doi: 10.4236/mrc.2013.22A002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Nagarajan, X. S. Xiao, S. Antony, G. Kohlhagen, Y. Pommier and M. Cushman, “Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Topoisomerase I Inhibitors Featuring Polyamine Side Chains on the Lactam Nitrogen,” Journal of Medicinal Chemistry, Vol. 46, No. 26, 2003, pp. 5712-5724. doi:10.1021/jm030313f
[2] A. Fassihi, D. Abedi, L. Saghaie, R. Sabet, H. Fazeli, G. Bostaki, O. Deilami and H. Sadinpou, “Synthesis, Antimicrobial Evaluation and QSAR Study of Some 3-Hydroxypyridine-4-one and 3-Hydroxypyran-4-one Derivatives,” European Journal of Medicinal Chemistry, Vol. 44, No. 5, 2009, pp. 2145-2157. doi:10.1016/j.ejmech.2008.10.022
[3] F. Manna, F. Chimenti, A. Bolasco, A. Filippelli and E. Lampa, “Antiinflammatory, Analgesic and Antipyfuztic 4,6-Disubstituted 3-Cyanopyridine-2-ones and 3-Cyano-2-aminopyridines,” Pharmacological Research, Vol. 26, No. 1, 1992, pp. 267-277. doi:10.1016/1043-6618(92)91243-A
[4] A. D. Elbein and R. J. Molyneux, “The Chemistry and Biochemistry of Simple Indolisidine and Related Polyhydroxy Alkaloids,” In: S. W. Pelletier, Ed., Alkaloids: Chemical and Biological Perspectives, Wiley, New York, 1981, pp. 1-54.
[5] S. S. P. Chou and P. W. Chen, “Cycloaddition Reactions of 4-Sulfur-substituted Dihydro-2-pyridones and 2-Pyridones with Conjugated Dienes,” Tetrahedron, Vol. 64, No. 8, 2008, pp. 1879-1887. doi:10.1016/j.tet.2007.11.090
[6] B. B. Snider and Q. Che, “Synthesis of Cladobotryal, CJ16,169, and CJ16,170,” Organic Letters, Vol. 6, No. 17, 2004, pp. 2877-2880. doi:10.1021/ol049130t
[7] M. Torres, S. Gil and M. C. Parra, “New Synthetic Methods to 2-Pyridone Rings,” Current Organic Chemistry, Vol. 9, No. 17, 2005, pp. 1757-1779. doi:10.2174/138527205774610886
[8] C. Xu, J. K. Bartley, D. I. Enache, D. W. Knight and G. J. Hutchings, “High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Michael Addition and Knoevenagel Condensation Reactions,” Synthesis, Vol. 19, 2005, pp. 3468-3476.
[9] I. Mohammadpoor-Baltork, M. M. Khodaei and K. Nikoofar, “Bismuth(III) Nitrate Pentahydrate: A Convenient and Selective Reagent for Conversion of Thiocarbonyls to Their Carbonyl Compounds,” Tetrahedron Letters, Vol. 44, No. 3, 2003, pp. 591-594. doi:10.1016/S0040-4039(02)02516-9
[10] S. Samajdar, F. F. Becker and B. K. Banik, “Surface-Mediated Highly Efficient Regioselective Nitration of Aromatic Compounds by Bismuth Nitrate,” Tetrahedron Letters, Vol. 41, No. 42, 2000, pp. 8017-8020. doi:10.1016/S0040-4039(00)01397-6
[11] B. K. Banik, N. Srivastava and S. K. Dasgupta, “A Remarkable Bismuth Nitrate-Catalyzed Protection of Carbonyl Compounds,” Tetrahedron Letters, Vol. 44, No. 6, 2003, pp.1191-1193. doi:10.1016/S0040-4039(02)02821-6
[12] B. K. Banik and N. Srivastava, “Bismuth Nitrate-Catalyzed Versatile Michael Reactions,” The Journal of Organic Chemistry, Vol. 68, No. 6, 2003, pp. 2109-2114. doi:10.1021/jo026550s
[13] S. D. Samant, V. M. Alexander and R. P. Bhat, “Bismuth(III) Nitrate Pentahydrate—A Mild and Inexpensive Reagent for Synthesis of Coumarins Under Mild Conditions,” Tertrahedron Letters, Vol. 46, No. 40, 2005, pp. 6957-6959. doi:10.1016/j.tetlet.2005.07.117
[14] H. Sheibani, M. Seifi and A. Bazgir, “Three-Component Synthesis of Pyrimidine and Pyrimidinone Derivatives in the Presence of High-Surface-Area MgO, a Highly Effective Heterogeneous Base Catalyst,” Synthetic Communications, Vol. 39, No. 6, 2009, pp. 1055-1064. doi:10.1080/00397910802474982
[15] M. Seifi and H. Sheibani, “High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3,4-Dihydropyrano[c]chromene Derivatives in Aqueous Media,” Catalysis Letters, Vol. 126, No. 3-4, 2008, pp. 275-279. doi:10.1007/s10562-008-9603-5
[16] H. Sheibani and M. Babaie, “Three-Component Reaction to Form 1,4-Dihydropyrano[2,3-c]pyrazol-5-yl Cyanides,” Synthetic Communications, Vol. 40, No. 2, 2010, pp. 257-265. doi:10.1080/00397910902964866
[17] N. Y. Gorobets, B. H. Yousefi, F. Belaj and C. O. Kappe, “Rapid Microwave-Assisted Solution Phase Synthesis of Substituted 2-Pyridone Libraries,” Tetrahedron, Vol. 60, No. 39, 2004, pp. 8633-8644. doi:10.1016/j.tet.2004.05.100
[18] B. K. Banik, A. T. Reddy, A. Datta and C. Mukhopadhyay, “Microwave-Induced Bismuth nitrate-Catalyzed Synthesis of Dihydropyrimidones via Biginelli Condensation under Solventless Conditions,” Tetrahedron Letters, Vol. 48, No. 41, 2007, pp. 7392-7394. doi:10.1016/j.tetlet.2007.08.007
[19] M. R. H. Elmoghayar, A. A. El-Agamy, M. Y. A. Nasr and M. M. M. Sallam, “Activated Nitriles in Heterocyclic Synthesis. Part III. Synthesis of N-Amino-2-pyridone, Pyranopyrazole and Thiazolopyridine Derivatives,” Journal of Heterocyclic Chemistry, Vol. 21, No. 6, 1984, pp. 1885-1887. doi:10.1002/jhet.5570210660

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.