Isolation of New Strains of Bacteria Able to Synthesize 1,3-Propanediol from Glycerol


The natural environment is inhabited by many species that exhibit very specific metabolic activities that may find industrial applications. The aim of the study was to select non-pathogenic cultures of bacteria of the genus Clostridium and lactic acid bacteria able to convert glycerol into 1,3-propanediol (1,3-PD). Another aim of this study was to identify the isolates that best produced 1,3-propanediol both from pure and crude glycerol. The most efficient strains identified (Cl. butyricum) were analysed on a bioreactor scale. The aim was to determine temperature conditions on the efficiency and duration of 1,3-PD synthesis. The species Clostridium were identified using amplification of the 16S rRNA coding sequence. A total of 123 isolates (of the genus Clostridium and lactic acid bacteria) were isolated; a vast majority of these were able to synthesize 1,3-PD. The best results were obtained for Cl. butyricum strain DSP1, which was isolated from the rumen of a cow fed with glycerol. The strain efficiency using pure glycerol on bioreactor scale 0.65 mol/mol of glycerol at a temperature of 38 and a constant pH of 7.0.

Share and Cite:

D. Szymanowska-Powałowska, A. Drożdżyńska and N. Remszel, "Isolation of New Strains of Bacteria Able to Synthesize 1,3-Propanediol from Glycerol," Advances in Microbiology, Vol. 3 No. 2, 2013, pp. 171-180. doi: 10.4236/aim.2013.32027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Nabe, N. Izuo, S. Yamada and I. Chibata, “Conversion of Glycerol to Dihydroxyacetone by Immobilized Whole Cells of Acetobacter xylinum,” Applied and Environmental Microbiology, Vol. 38, No. 6, 1979, pp. 1056-1060.
[2] C. Claret, J. M. Salmon, C. Romieu and A. Bories, “Physiology of Gluconobacter oxydans during dihydroxyacetone Production from Glycerol,” Applied Microbiology and Biotechnology, Vol. 41, No. 3, 1994, pp. 359-365. doi:10.1007/BF00221232
[3] A. Bories, E. Himmi, J. J. A. Jauregui, C. Pelayo-Ortiz and V. A. Gonzales, “Glycerol Fermentation with Propionibacteria and Optimization of the Production of Propionic Acid,” Sciences des Aliments, Vol. 24, 2004, pp. 121-135. doi:10.3166/sda.24.121-136
[4] K. A. Taconi, K. P. Venkataramanan and D. T. Johnson, “Growth and Solvent Production by Clostridium pasteurianum ATCC 6013TM Utilizing Biodiesel-Derived Crude Glycerol as the Sole Carbon Source,” Environmental Progress & Sustainable Energy, Vol. 28, No. 1, 2009, pp. 100-110. doi:10.1002/ep.10350
[5] E. Scholten, T. Renz and J. Thomas, “Continuous Cultivation Approach for Fermentative Succinic Acid Production from Crude Glycerol by Basfia succiniciproducen DD1,” Biotechnology Letters, Vol. 31, No. 12, 2009, pp. 1947-1951. doi:10.1007/s10529-009-0104-4
[6] R. D. Ashby, D. K. Y. Solaiman and G. D. Strahan, “Efficient Utilization of Crude Glycerol as Fermentation Substrate in the Synthesis of Poly (3-Hydroxybutyrate) Biopolymers,” Journal of the American Oil Chemists Society, Vol. 88, No. 7, 2011, pp. 949-959. doi:10.1007/s11746-011-1755-6
[7] W. J. Choi, M. R. Hartono, W. H. Chan, S. S. Yeo, “Ethanol Production from Biodiesel-Derived Crude Glycerol by Newly Isolated Kluyvera cryocrescen,” Applied Microbiology and Biotechnology, Vol. 89, No. 4, 2011, pp. 1255-1264. doi:10.1007/s00253-010-3076-3
[8] A. Kosmider, W. Bialas, P. Kubiak, A. Drozdzyńska and K. Czaczyk, “Vitamin B12 Production from Crude Glycerol by Propionibacterium freudenreichii ssp. shermanii: Optimization of Medium Composition through Statistical Experimental Designs,” Bioresource Technology, Vol. 105, 2012, pp. 128-133. doi:10.1016/j.biortech.2011.11.074
[9] W. Rymowicz, A. Rywińska and M. Marcinkiewicz, “High-Yield Production of Erythritol from Raw Glycerol in Fed-Batch Cultures of Yarrowia lipolytic,” Biotechnology Letters, Vol. 31, No. 3, 2009, pp. 377-380. doi:10.1007/s10529-008-9884-1
[10] S. V. Kamzolova, A. R. Fatykhova, E. G. Dedyukhina, S. G. Anastassiadis, N. P. Golovchenko and I. G. Morgunov, “Citric Acid Production by Yeast Grown on Glycerol-Containing Waste from Biodiesel Industry,” Food Technology and Biotechnology, Vol. 49, No. 1, 2011, pp. 65-74.
[11] A. Chatzifragkou, A. Makri, A. Belka, S. Bellou, M. Mayrou, M. Mastridou, P. Mystrioti, G. Onjaro, G. Aggelis and S. Papanikolaou, “Biotechnological Conversion of Biodiesel Derived Waste Glycerol by Yeast and Fungal Species,” Energy, Vol. 36, No. 2, 2012, pp. 1097-1108. doi:10.1016/
[12] S. Papanikolaou and G. Aggelis, “Biotechnological Valorization of Biodiesel Derived Glycerol Waste through Production of Single Cell Oil and Citric Acid by Yarrowia lipolytica,” Lipid Technology, Vol. 21, No. 4, 2009, pp. 83-87. doi:10.1002/lite.200900017
[13] S. K. Moon, Y. J. Wee, J. S. Yun and H. W. Ryu, “Production of Fumaric Acid Using Rice Bran and Subsequent Conversion to Succinic Acid through a Two-Step Process,” Applied Biochemistry and Biotechnology, Vol. 115, No. 1-3, 2004, pp. 843-856. doi:10.1385/ABAB:115:1-3:0843
[14] P. V. Arruda and M. G. Felipe, “Role of Glycerol Addition on Xylose-to-Xylitol Bioconversion by Candida guilliermondii,” Current Microbiology, Vol. 58, No. 3, 2008, pp. 274-278. doi:10.1007/s00284-008-9321-7
[15] P. F. F. Amaral, T. F. Ferreira, G. C. Fontes and M. A. Z. Coelho, “Glycerol Valorization: New Biotechnological Routes,” Food and Bioproducts Processing, Vol. 87, No. 3, 2009, pp. 179-186. doi:10.1016/j.fbp.2009.03.008
[16] S. Koganti, T. M. Kuo and C. P. Kurtzman, “Production of Arabitol from Glycerol: Strain Screening and Study of Factors Affecting Production Yield,” Applied, Microbiology and Cell Physiology, Vol. 90, No. 1, 2011, pp. 257-267.
[17] R. Bodarski, T. Wertelecki, F. Bommer and S. Gosiewski, “The Changes of Metabolic Status and Lactation Performance in Dairy Cows under Feeding TMR with Glycerin (Glycerol) Supplement at Periparturient Period,” Electronic Journal of Polish Agricultural Universities, Vol. 8, No. 4, 2005.
[18] F. Barbirato, E. H. Himmi, T. Conte and A. Bories, “1,3-Propanediol Production by Fermentation: An Interesting Way to Valorize Glycerin from the Ester and Ethanol Industries,” Industrial Crops and Products, Vol. 7, No. 2-3, 1998, pp. 281-289. doi:10.1016/S0926-6690(97)00059-9
[19] T. Haas, B. Jaeger, R. Weber, S. F. Mitchell and C. F. King, “New Diol Processes: 1,3-Propanediol and 1,4-Butanediol,” Applied Catalysis A: General, Vol. 280, No. 1, 2005, pp. 83-88. doi:10.1016/j.apcata.2004.08.027
[20] R. K. Saxena, P. Anand, S. Saran and J. Isar, “Microbial Production of 1,3-Propanediol: Recent Developments and Emerging Opportunities,” Biotechnology Advances, Vol. 27, No. 6, 2009, pp. 895-913. doi:10.1016/j.biotechadv.2009.07.003
[21] S. Papanikolaou, S. Fakas, M. Fick, I. Chevalot, M. Galiotou-Panayotou, M. Komaitis, I. Marc and G. Aggelis, “Biotechnological Valorisation of Raw Glycerol Discharged after Bio-Diesel (Fatty Acid Methyl Esters) Manufacturing Process: Production of 1,3-Propanediol, Citric Acid and Single Cell Oil,” Biomass and Bioenergy, Vol. 32, No. 1, 2008, pp. 60-71. doi:10.1016/j.biombioe.2007.06.007
[22] M. Metsoviti, S. Paramithiotis, E.H. Drosinos, M. Galiotou-Panayotou, G. J. E. Nychas, A. P. Zeng and S. Papanikolaou, “Screening of Bacterial Strains Capable of Converting Biodiesel-Derived Raw Glycerol into 1,3-Propanediol, 2,3-Butanediol and Ethanol,” Engineering in Life Sciences, Vol. 12, No. 1, 2012, pp. 57-68. doi:10.1002/elsc.201100058
[23] A. Freund, “über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin,” Monatshefte für Chemie, Vol. 2, No. 1, 1881, pp. 636-641. doi:10.1007/BF01516545
[24] B. Sims, “Clearing the Way for Byproduct Quaity,” 2011.
[25] H. Biebl, K. Menzel, A. P. Zeng and W. D. Deckwer, “Microbial Production of 1,3-Propanediol,” Applied Microbiology and Biotechnology, Vol. 52, No. 3, 1999, pp. 289-297. doi:10.1007/s002530051523
[26] T. Willke and K. Vorlop, “Biotransformation of Glycerol into 1,3-Propanediol,” European Journal of Lipid Science and Technology, Vol. 110, No. 9, 2008, pp. 831-840. doi:10.1002/ejlt.200800057
[27] A. Drozdzyńska, K. Leja and K. Czaczyk, “Biotechnological Production of 1,3-Propanediol from Crude Glycerol,” Journal of Biotechnology, Computational Biology and Bionanotechnology, Vol. 92, No. 1, 2011, pp. 92-100.
[28] E. L. Himmi, A. Bories and F. Barbirato, “Nutrient Requirements for Glycerol Conversion to 1,3-Propanediol by Clostridium butyricum,” Bioresource Technology, Vol. 67, No. 2, 1999, pp. 123-128. doi:10.1016/S0960-8524(98)00109-6
[29] A. Suau, R. Bonnet, M. Sutren, J. J. Godon, G. R. Gibson, M. D. Collins and J. Dore, “Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within Human Gut,” Applied Environmental Microbiology, Vol. 65, No. 11, 1999, pp. 4799-4807.
[30] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “Basic Local Alignment Search Tool,” Journal of Molecular Biology, Vol. 215, No. 3, 1990, pp. 403-410. doi:10.1016/S0022-2836(05)80360-2
[31] K. Tamura, J. Dudley, M. Nei and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0.,” Molecular Biology and Evolution, Vol. 24, No. 8, 2007, pp. 1596-1599. doi:10.1093/molbev/msm092
[32] H. Biebl and C. Sproer, “Taxonomy of the Glycerol Fermenting Clostridia and Description of Clostridium diolis sp.nov,” Systematic and Applied Microbiology, Vol. 25, No. 4, 2002, pp. 491-497. doi:10.1078/07232020260517616
[33] A. R. Hippen, J. M. DeFarin and P. L. Linke, “Glycerol and Other Energy Sources for Metabolism and Production of Transition Dairy Cows,” Florida Ruminant Nutrition Symposium, Gainesville, 29-30 January 2008, pp. 1-17.
[34] M. DeFrain, A. R. Hippen, K. F. Kalscheur and P. W. Jardon, “Feeding Glycerol to Transition Dairy Cows: Effects on Blood Metabolites and Lactation Performance,” Journal of Dairy Science, Vol. 87, No. 12, 2004, pp. 4195-4206. doi:10.3168/jds.S0022-0302(04)73564-X
[35] M. Gungormusler, C. Gonen, G. Ozdemir and N. Azbar, “1,3-Propanediol Production Potential of Clostridium saccharobutylicum NRRL B-643,” New Biotechnology, Vol. 27, No. 6, 2010, pp. 782-788. doi:10.1016/j.nbt.2010.07.010
[36] C. M. Veiga and M. A. Foster, “1,3-Propanediol: NAD+ Oxidoreductase of Lactobacillus brevis and Lactobacillus buchneri,” Journal of Bacteriology, Vol. 174, No. 3, 1992, pp. 1013-1019.
[37] G. Garai-Ibabe, I. Ibarburu, I. Berregi, O. Claisse, A. Lonvaud-Funel, A. Irastorza and M. T. Duenas, “Glycerol Metabolism and Bitterness Producing Lactic Acid Bacteria in Cidermaking,” Internationale Journal of Food Microbiology, Vol. 121, No. 3, 2008, pp. 253-261. doi:10.1016/j.ijfoodmicro.2007.11.004
[38] S. Pflugl, H. Marx, D. Mattanovich and M. Sauer, “1,3-Propanediol Production from Glycerol with Lactobacillus diolivorans,” Bioresource Technology, Vol. 119, 2012, pp. 133-140. doi:10.1016/j.biortech.2012.05.121
[39] A. Rehman, M. Matsumura, N. Nomura and S. Sato, “Growth and 1,3-Propanediol Production on Pre-Treated Sunflower Oil Bio-Diesel Raw Glycerol Using a Strict Anaerobe Clostridium butyricum,” Current Research in Bacteriology, Vol. 1, No. 1, 2008, pp. 7-16. doi:10.3923/crb.2008.7.16
[40] A. Chatzifragkou, S. Papanikolau, D. Dietz, A. I. Doulgeraki, G. J. E. Nychas and G. J. E. Zeng, “Production of 1,3-Propanediol by Clostridium butyricum Growing on Biodiesel-Derived Crude Glycerol through a Non-Sterilized Fermentation Process,” Applied Microbiology and Biotechnology, Vol. 91, No. 1, 2011, pp. 101-112. doi;10.1007/s00253-011-3247-x
[41] A. K. Ringel, E. Wilkens, D. Hortig, T. Willke and K. D. Vorlop, “An Improved Screening Method for Microorganisms Able to Convert Crude Glycerol to 1,3-Propanediol and to Tolerate High Product Concentrations,” Applied Microbiology and Biotechnology, Vol. 93, No. 3, 2012, pp. 1049-1056. doi:10.1007/s00253-011-3594-7
[42] K. Venkataramanan, J. Boatman, Y. Kurniawan, G. Taconi, G. Bothun and C. Scholz, “Impact of Impurities in Biodiesel-Derived Crude Glycerol on the Fermentation by Clostridium pasteurianum ATCC 6013,” Applied Microbiology and Biotechnology, Vol. 93, No. 3, 2012, pp. 1325-1335. doi;10.1007/s00253-011-3766-5
[43] S. Papanikolaou, P. Ruiz-Sanchez, B. Pariset, F. Blanchard and M. Fick, “High Production,” Journal of Biotechnology, Vol. 77, No. 2-3, 2000, pp. 191-208. doi:10.1016/S0168-1656(99)00217-5
[44] T. Colin, A. Bories and G. Moulin, “Inhibition of Clostridium butyricum by 1,3-Propanediol and Diols during Glycerol Fermentation,” Applied Microbiology and Biotechnology, Vol. 54, No. 2, 2000, pp. 201-205. doi:10.1007/s002530000365
[45] M. González-Pajuelo, J. C. Andrade and I. Vasconcelos, “Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 Using a Synthetic Medium and Raw Glycerol,” Journal of Industrial Microbiology and Biotechnology, Vol. 31, No. 9, 2004, pp. 442-446. doi:10.1007/s10295-004-0168-z
[46] T. Colin, A. Bories, C. Lavigne and G. Moulin, “Effect of Acetate and Butyrate during Glycerol Fermentation by Clostridium butyricum,” Current Microbiology, Vol. 43, No. 4, 2001, pp. 238-243. doi:10.1007/s002840010294
[47] G. Kaur, A. K. Srivastava and S. Chand, “Simple Strategy of Repeated Batch Cultivation for Enhanced Production of 1,3-Propanediol Using Clostridium diolis,” Applied Biochemistry and Microbiology, Vol. 167, No. 5, 2012, pp. 1061-1068.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.