Voltammetric Method Using Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for the Determination of Terbutaline Sulfate in Pork Sample

DOI: 10.4236/jasmi.2013.32009   PDF   HTML     3,191 Downloads   6,324 Views   Citations


Electrochemical properties of terbutaline sulfate (TBS) at the glassy carbon electrode modified with multi-walled carbon nanotubes (MWNTs) were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The response was evaluated with respect to pH, scan rate and other variables. Some electrochemical parameters, such as the charge number and proton number, were calculated. The results indicated that TBS underwent irreversible oxidation at the modified electrode, which was an adsorption-controlled process with two protons and two electrons. The reductive peak current of TBS significantly increased and the peak potential shifted negatively at the modified electrode, thus resulting in an electrode for TBS. The current was proportional to the concentration of TBS over 1.12 and 141 μM with a detection limit of 0.34 μM (at S/N = 3). The modified electrode showed good sensitivity, selectivity and stability for the determination of TBS in pork sample.

Share and Cite:

W. Xu, R. Lei, W. Cao, C. Guo, X. Zhang and S. Wang, "Voltammetric Method Using Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for the Determination of Terbutaline Sulfate in Pork Sample," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 3 No. 2, 2013, pp. 75-79. doi: 10.4236/jasmi.2013.32009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Daraghmeh, M. M. Al-Omari, Z. Sara, A. A. Badwan and A. M. Jaber, “Determination of TBS and Its Degradation Products in Pharmaceutical Formulations Using LC,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 29, 2002, pp. 927-937. doi:10.1016/S0731-7085(02)00216-9
[2] L. Shen, Z. Li and P. He, “Electrochemical Behavior of β2-Agonists at Graphite Nanosheet Modified Electrodes,” Electrochemistry Commuications, Vol. 12, No. 7, 2010, pp. 876-881. doi:10.1016/j.elecom.2010.04.010
[3] N. J. Engeseth, K. O. Lee, W. G. Bergen, W. G. Helferich, B. K. Knudson and R. A. Merkel, “Fatty Acid Profiles of Lipid Depots and Cholesterol Concentration in Muscle Tissue of Finishing Pigs Fed Ractopamine,” Journal of Food Science, Vol. 57, No. 5, 1992, pp. 1060-1062. doi:10.1111/j.1365-2621.1992.tb11262.x
[4] S. Agatonovic-Kustrin and R. Alany, “Application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy Combined with Artificial Neural Networks in Analysing Enantiomeric Purity of Terbutaline Sulphate Bulk Drug,” Analytica Chimica Acta, Vol. 449, No. 1-2, 2001, pp. 157-165. doi:10.1016/S0003-2670(01)01234-X
[5] Z. P. Wang, Z. J. Zhang, Z. F. Fu, D. L. Chen and X. Zhang, “Flow-Injection Chemiluminescence Detection for Studying Protein Binding of Terbutaline Sulfate with On-Line Microdialysis Sampling,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 33, No. 4, 2003, pp. 765-773. doi:10.1016/S0731-7085(03)00416-3
[6] M. P. Turberg, J. M. Rodewald and M. R. Coleman, “Determination of Ractopamine in Monkey Plasma and Swine Serum by High-Performance Liquid Chromatography with Electrochemical Detection,” Journal of Chromatography B, Vol. 675, No. 2, 1996, pp. 279-285. doi:10.1016/0378-4347(95)00397-5
[7] W. L. Shelver and D. J. Smith, “Application of a Monoclonal Antibodybased Enzyme-Linked Immunosorbent Assay for the Determination of Ractopamine in Incurred Samples from Food Animals,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 10, 2002, pp. 2742-2747. doi:10.1021/jf011372+
[8] S. Li, J. Wang and S. Zhao, “Determination of TBS by Capillary Electrophoresis with Chemiluminescence Detection,” Journal of Chromatography B, Vol. 877, No. 2009, pp. 155-158.
[9] S. Moane, J. R. B. Rodriguez, A. J. M. Ordieres, P. T. Blanco and M. R. Smyth, “Electrochemical Behaviour of Clenbuterol at Nafion-Modified Carbon-Paste Electrodes,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 14, No. 1-2, 1995, pp. 57-63. doi:10.1016/0731-7085(95)01610-4
[10] S. Moane, M. R. Smyth and M. O’Keeffe, “Differential-Pulse Voltammetric Determination of Clenbuterol in Bovine Urine Using a Nafion-Modified Carbon Paste Electrode,” Analyst, Vol. 121, No. 6, 1996, pp. 779-784. doi:10.1039/an9962100779
[11] R. X. Guo, Q. Xu, D. Y. Wang and X. Y. Hu, “Trace Determination of Clenbuterol with an MWCNT-Nafion Nanocomposite Modified Electrode,” Microchimica Acta, Vol. 161, No. 1-2, 2008, pp. 265-272. doi:10.1007/s00604-007-0766-3
[12] C. Karuwan, A. Wisitsoraat, T. Maturos, D. Phokharatkul, A. Sappat, K. Jaruwongrungsee, T. Lomas and A. Tuantranont, “Flow Injection Based Microfluidic Device with Carbon Nanotube Electrode for Rapid Salbutamol Detection,” Talanta, Vol. 79, No. 4, 2009, pp. 995-1000. doi:10.1016/j.talanta.2009.02.015
[13] P. Andrea, S. Miroslav, S. Silvia and M. Stanislav, “A Solid Binding Matrix/Molecularly Imprinted Polymer-Based Sensor System for the Determination of Clenbuterol in Bovine Liver Using Differential-Pulse Voltammetry,” Sensors and Actuators B: Chemical, Vol. 76, 2001, pp. 286-294. doi:10.1016/S0925-4005(01)00586-X
[14] R. N. Goyal, D. Kaur, S. P. Singh and A. K. Pandey, “Effect of Graphite and Metallic Impurities of C60 Fullerene on Determination of Salbutamol in Biological Fluids,” Talanta, Vol. 75, 2008, pp. 63-69. doi:10.1016/j.talanta.2007.10.030
[15] N. Yilmaz, S. A. Ozkan, B. Uslu, Z. Senturk and I. Biryol, “Determination of Terbutaline Based on Oxidation by Voltammetry,” Journal of Pharmaceutical and Biomedical. Analysis, Vol. 17, No. 2, 1998, pp. 349-355. doi:10.1016/S0731-7085(97)00226-4
[16] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[17] E. Katz, I. Willner and J. Wang, “Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles,” Electroanalysis, Vol. 16, No. 1-2, 2004, pp. 19-44. doi:10.1002/elan.200302930
[18] H. Xiong, Y. Zhao, P. Liu, X. Zhang and S. Wang, “Electrochemical Properties and the Determination of Nicotine at a Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode,” Microchimica Acta, Vol. 168, No. 1-2, 2010, pp. 31-36. doi:10.1007/s00604-009-0258-8
[19] C. M. Welch and R. G. Compton, “The Use of Nanoparticles in Electroanalysis: A Review,” Analytical and Bioanalytical Chemistry, Vol. 384, No. 3, 2006, pp. 601-619. doi:10.1007/s00216-005-0230-3
[20] A.Y. Kasumov, H. Bouchiat, B. Reulet, O. Stephan, I. Khodos, Y. B. Gorbatov and C. Colliex, “Conductivity and Atomic Structure of Isolated Multiwalled Carbon Nanotubes,” Europhysics Letters, Vol. 43, No. 1, 1998, pp. 89-94. doi:10.1209/epl/i1998-00324-1
[21] A. J. Bard and L. R. Faulkner, “Electrochemical Methods,” 2nd Edition, Wiley, New York, 2001.
[22] S. Shahrokhian and L. Fotouhi, “Carbon Paste Electrode Incorporating Multi-Walled Carbon Nanotube/Cobalt Salophen for Sensitive Voltammetric Determination of Tryptophan,” Sensors and Actuators B: Chemical, Vol. 123, No. 2, 2007, pp. 942-949. doi:10.1016/j.snb.2006.10.053
[23] Y. Liu, Z. Shen and K. Yokogawa, “Investigation of Preparation and Structures of Activated Carbon Nanotubes,” Materials Research Bulletin, Vol. 41, No. 8, 2006, pp. 1503-1512. doi:10.1016/j.materresbull.2006.01.017
[24] A. M. Bond, “Modern Polarographic Methods,” In: M. Dekker, Ed., Analytical Chemistry, 1980, p. 29.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.