Antibody fragments: Prolonging circulation half-life special issue-antibody research


Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.

Share and Cite:

Herrington-Symes, A. , Farys, M. , Khalili, H. and Brocchini, S. (2013) Antibody fragments: Prolonging circulation half-life special issue-antibody research. Advances in Bioscience and Biotechnology, 4, 689-698. doi: 10.4236/abb.2013.45090.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hudson, P.J. and Souriau, C. (2003) Engineered antibodies. Nature Medicine, 9, 129-134. doi:10.1038/nm0103-129
[2] Chapman, A.P., et al. (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnology, 17, 780-783. doi:10.1038/11717
[3] Bradbury, A., et al. (2003) Antibodies in proteomics I: Generating antibodies. Trends in Biotechnology, 21, 275281. doi:10.1016/S0167-7799(03)00112-4
[4] Holliger, P. and Hudson, P.J. (2005) Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126-1136. doi:10.1038/nbt1142
[5] Nelson, A.L. (2010) Antibody fragments: Hope and hype. Multi-Agent-Based Simulation, 2, 77-83. doi:10.4161/mabs.2.1.10786
[6] Chowdhury, P.S. and Wu, H. (2005) Tailor-made antibody therapeutics. Methods, 36, 11-24. doi:10.1016/j.ymeth.2005.01.002
[7] Pucca, M.B., et al. (2011) Therapeutic monoclonal antibodies: scFv patents as a marker of a new class of potential biopharmaceuticals. Brazilian Journal of Pharmaceutical Sciences, 47, 31-38. doi:10.1590/S1984-82502011000100005
[8] Teicher, B.A. and Chari, R.V. (2011) Antibody conjugate therapeutics: Challenges and potential. Clinical Cancer Research, 17, 6389-6397. doi:10.1158/1078-0432.CCR-11-1417
[9] Nelson, A.L. and Reichert, J.M. (2009) Development trends for therapeutic antibody fragments. Nature Biotechnology, 27, 331-337. doi:10.1038/nbt0409-331
[10] Kaur, S., et al. (2012) Recent trends in antibody-based oncologic imaging. Cancer Letters, 315, 97-111. doi:10.1016/j.canlet.2011.10.017
[11] Leader, B., et al. (2008) Protein therapeutics: A summary and pharmacological classification. Nature Reviews Drug Discovery, 7, 21-39. doi:10.1038/nrd2399
[12] Wang, W., et al. (2008) Monoclonal antibody pharmacokinetics and pharmaco-dynamics. Clinical Pharmacology & Therapeutics, 84, 548-558. doi:10.1038/clpt.2008.170
[13] Steinwand, M., et al. (2010) Production of antibody fragments in the gram-positive bacterium Bacillus megaterium. In: Kontermann, R. and Dübel, S., Eds., Antibody Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 293-299.
[14] Reilly, D. and Yansura, D. (2010) Production of antibodies and antibody fragments in Escherichia coli. In: Kontermann, R. and Dübel, S., Eds., Antibody Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 331-344.
[15] Kunert, R. (2008) Expression of Fab fragments in CHO and Pichia pastoris. BioProcess International.
[16] Zhao, Y., et al. (2009) Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: Papain digestion of mAb and transient expression in mammalian cells. Protein Expression and Purification, 67, 182-189. doi:10.1016/j.pep.2009.04.012
[17] Griep, R. and McDougall, J. (2010) Analysis and purification of antibody fragments using protein A, protein G, and protein L. In: Kontermann, R. and Dübel, S., Eds., Antibody Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 301-315.
[18] Weir, A.N., et al. (2002) Formatting antibody fragments to mediate specific therapeutic functions. Biochemical Society Transactions, 30, 512-516. doi:10.1042/BST0300512
[19] Singh, G. (2009) The emergence of antibody fragments and derivatives. Innovation in Pharmaceutical Tachnology, BioPharma UK, Biopharma.
[20] Adams, G.P., et al. (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Research, 61, 4750-4755.
[21] Ahmad, Z.A., et al. (2012) scFv antibody: Principles and clinical application. Clinical and Developmental Immunology, 2012, Article ID: 980250. doi:10.1155/2012/980250
[22] Joosten, V., et al. (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microbial Cell Factories, 2, 1. doi:10.1186/1475-2859-2-1
[23] Hellwig, S. and Melmer, G. (2010) Bioreactor production of scFv fragments in Pichia pastoris. In: Kontermann, R. and Dübel, S., Eds., Antibody Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 363-375.
[24] Conrad, U. and Floss, D. (2001) Expression of antibody fragments in transgenic plants. In: Kontermann, R. and Dübel, S., Eds., Antibody Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 377-386.
[25] Chames, P., et al. (2009) Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 157, 220-233. doi:10.1111/j.1476-5381.2009.00190.x
[26] Jain, M., et al. (2007) Engineering antibodies for clinical applications. Trends in Biotechnology, 25, 307-316. doi:10.1016/j.tibtech.2007.05.001
[27] Andersen, J.T. and Sandlie, I. (2009) The versatile MHC class I: Related FcRn protects IgG and albumin from degradation. Drug Metabolism and Pharmacokinetics, 24, 318-332. doi:10.2133/dmpk.24.318
[28] Mueller, D., et al. (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. The Journal of Biological Chemistry, 282, 12650-12660. doi:10.1074/jbc.M700820200
[29] Nguyen, A., et al. (2006) The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Engineering Design & Selection, 19, 291-297. doi:10.1093/protein/gzl011
[30] Pluckthun, A. and Pack, P. (1997) New protein engineering approaches to multi-valent and bispecific antibody fragments. Immunotechnology, 3, 83-105. doi:10.1016/S1380-2933(97)00067-5
[31] Haraldsson, B. et al. (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiological Reviews, 88, 451-487. doi:10.1152/physrev.00055.2006
[32] Chapman, A.P. (2002) PEGylated antibodies and antibody fragments for improved therapy: A review. Advanced Drug Delivery Reviews, 54, 531-545. doi:10.1016/S0169-409X(02)00026-1
[33] Jevsevar, S., et al. (2010) PEGylation of therapeutic proteins. Biotechnology Journal, 5, 113-128. doi:10.1002/biot.200900218
[34] Bailon, P. and Won, C.Y. (2009) PEG-modified biopharmaceuticals. Expert Opinion on Drug Delivery, 6, 1-16. doi:10.1517/17425240802650568
[35] Chen, C., et al. (2011) Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opinion on Drug Delivery, 8, 1221-1236. doi:10.1517/17425247.2011.602399
[36] Palm, T. et al. (2011) The effect of PEGylation on the stability of small therapeutic proteins. Pharmaceutical Development and Technology, 16, 441-448. doi:10.3109/10837450.2010.535830
[37] Kang, J.S., et al. (2009) Emerging PEGylated drugs. Expert Opinion Emerg Drugs, 14, 363-380. doi:10.1517/14728210902907847
[38] Payne, R.W., et al. (2011) Product development issues for PEGylated proteins. Pharmaceutical Development Technology, 16, 423-440. doi:10.3109/10837450.2010.513990
[39] Germershaus, O., et al. (2006) Trastuzumab-polyethylenimine-polyethylene glycol conjugates for targeting Her2-expressing tumors. Bioconjugate Chemistry, 17, 1190-1199. doi:10.1021/bc0601119
[40] Pasut, G. and Veronese, F.M. (2012) State of the art in PEGylation: The great versatility achieved after forty years of research. Journal of Controlled Release, 161, 461-472. doi:10.1016/j.jconrel.2011.10.037
[41] Delgado, C., et al. (1996) Enhanced tumour specificity of an anti-carcinoembrionic antigen Fab’ fragment by poly(ethylene glycol) (PEG) modification. British Journal Cancer, 73, 175-182. doi:10.1038/bjc.1996.32
[42] Koumenis, I.L., et al. (2000) Modulating pharmacokinetics of an anti-interleukin-8 F(ab’)2 by amine-specific PEGylation with preserved bioactivity. International Journal of Pharmaceutics, 198, 83-95. doi:10.1016/S0378-5173(99)00458-5
[43] Li, L., et al. (2006) Improved biodistribution and radioimmunoimaging with poly(ethylene glycol)-DOTA-conjugated anti-CEA diabody. Bioconjugate Chemistry, 17, 68-76. doi:10.1021/bc0502614
[44] Lee, L.S., et al. (1999) Prolonged circulating lives of single-chain fv proteins conjugated with polyethylene glycol: A comparison of conjugation chemistries and compounds. Bioconjugate Chemistry, 10, 973-981.
[45] Lu, Y., et al. (2008) Effect of PEGylation on the solution conformation of antibody fragments. Journal of Pharmaceutical Sciences, 97, 2062-2079. doi:10.1002/jps.21170
[46] Natarajan, A., et al. (2005) Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals. Bioconjugate Chemistry, 16, 113-121.
[47] Krinner, E.M., et al. (2006) A highly stable polyethylene glycol-conjugated human single-chain antibody neutralizing granulocyte-macrophage colony stimulating factor at low nanomolar concentration. Protein Engineering Design & Selection, 19, 461-470. doi:10.1093/protein/gzl031
[48] Xiong, C.Y., et al. (2006) Development of tumor targeting anti-MUC-1 multimer: Effects of di-scFv unpaired cysteine location on PEGylation and tumor binding. Protein Engineering Design & Selection, 19, 359-367. doi:10.1093/protein/gzl020
[49] Yang, K., et al. (2003) Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Engineering Design & Selection, 16, 761-770. doi:10.1093/protein/gzg093
[50] Kubetzko, S., et al. (2006) PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: Effects on tumor targeting. The Journal of Biological Chemistry, 281, 35186-35201. doi:10.1074/jbc.M604127200
[51] Humphreys, D.P., et al. (2007) Alternative antibody Fab’ fragment PEGylation strategies: Combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering. Protein Engineering Design & Selection, 20, 227-234.
[52] Albrecht, H., et al. (2003) Production of soluble ScFvs with C-terminal-free thiol for site-specific conjugation or stable dimeric ScFvs on demand. Bioconjugate Chemistry, 15, 16-26.
[53] Knight, D.M., et al. (2004) Pharmacodynamic enhancement of the anti-platelet antibody fab abciximab by sitespecific pegylation. Platelets, 15, 409-418. doi:10.1080/09537100410001723135
[54] Roberts, M.J., Bentley, M.D. and Harris, J.M. (2002) Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 54, 459-476. doi:10.1016/S0169-409X(02)00022-4
[55] Choy, E.H.S., et al. (2002) Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: A phase II double-blinded, randomized, dose-escalating trial. Rheumatology, 41, 1133-1137.
[56] Schreiber, S., et al. (2005) A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology, 129, 807-818. doi:10.1053/j.gastro.2005.06.064
[57] Nesbitt, A., Stephens, S., et al. (2009) Certolizumab pegol: A PEGylated anti-tumour necrosis factor alpha biological agent. In: Veronese, F., Ed., PEGylated Protein Drugs: Basic Science and Clinical Applications, Birkhäuser Basel, Basel, 229-254. doi:10.1007/978-3-7643-8679-5_14
[58] Ton, N.C., et al. (2007) Phase I evaluation of CDP791, a PEGylated di-Fab’ conjugate that binds vascular endothelial growth factor receptor 2. Clinical Cancer Research, 13, 7113-7188. doi:10.1158/1078-0432.CCR-07-1550
[59] Dunlap, L. (2013) The role of CD40L in ALS. Drug Discovery News, 9, 5.
[60] Mross K., F.R., Richly, H., Scharr, D., Buechert, M., Stern, A., Hoth, D., Gille, H., Audoly, L.P. and Scheulen M.E. (2011) First in human phase I study of PRS-050 (Angiocal), a VEGF-A targeting anticalin, in patients with advanced solid tumors: Results of a dose escalation study. American Association for Cancer Research, 10, A212. doi:10.1158/1535-7163.TARG-11-A212
[61] Tolcher, A.W., et al. (2011) Phase i and pharmacokinetic study of CT-322 (BMS-844203), a targeted adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clinical Cancer Research, 17, 363-371.
[62] Shaunak, S., et al. (2006) Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nature Chemical Biology, 2, 312-313. doi:10.1038/nchembio786
[63] Khalili, H., et al. (2012) Comparative binding of disulfide-bridged PEG-Fabs. Bioconjugate Chemistry, 23, 22622277. doi:10.1021/bc300372r
[64] Cong, Y., et al. (2012) Site-specific PEGylation at histidine tags. Bioconjugate Chemistry, 23, 248-63. doi:10.1021/bc200530x
[65] Thom, J., et al. (2011) Recombinant protein hydrazides: Application to site-specific protein PEGylation. Bioconjugate Chemistry, 22, 1017-1020.
[66] Almac Group Ltd. (2013) Almac protein conjugation technology.
[67] Gregoriadis, G., et al. (2005) Improving the therapeutic efficacy of peptides and proteins: A role for polysialic acids. International Journal of Pharmaceutics, 300, 125130.
[68] Constantinou, A., et al. (2009) Site-specific polysialylation of an antitumor single-chain Fv fragment. Bioconjugate Chemistry, 20, 924-931. doi:10.1021/bc8005122
[69] Constantinou, A., et al. (2008) Modulation of antibody pharmacokinetics by chemical polysialylation. Bioconjugate Chemistry, 19, 643-650. doi:10.1021/bc700319r
[70] Kopecek, J. and Kopecková, P. (2010) HPMA copolymers: Origins, early developments, present, and future. Advanced Drug Delivery Reviews, 62, 122-149. doi:10.1016/j.addr.2009.10.004
[71] Seymour, L.W., et al. (1991) Synthetic polymers conjugated to monoclonal antibodies: Vehicles for tumourtargeted drug delivery. Selective Cancer Therapeutics, 7, 59-73. doi:10.1089/sct.1991.7.59
[72] Lu, Z.R., et al. (1999) Polymerizable Fab’ antibody fragments for targeting of anticancer drugs. Nature Biotechnol, 17, 1101-1104. doi:10.1038/15085
[73] Mehvar, R. (2000) Dextrans for targeted and sustained delivery of therapeutic and imaging agents. Journal of Controlled Release, 69, 1-25. doi:10.1016/S0168-3659(00)00302-3
[74] Fagnani, R., et al. (1995) Altered pharmacokinetic and tumour localization properties of Fab’ fragments of a murine monoclonal anti-CEA antibody by covalent modification with low molecular weight dextran. Nuclear Medicine Communications, 16, 362-369. doi:10.1097/00006231-199505000-00008
[75] Kratz, F. (2008) Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal Controlled Release, 132, 171-183. doi:10.1016/j.jconrel.2008.05.010
[76] Dennis, M.S., et al. (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. The Journal of Biological Chemistry, 277, 35035-35043. doi:10.1074/jbc.M205854200
[77] Dennis, M.S., et al. (2007) Imaging tumors with an albumin-binding Fab: A novel tumor-targeting agent. Cancer Research, 67, 254-261. doi:10.1158/0008-5472.CAN-06-2531
[78] Smith, B.J., et al. (2001) Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjugate Chemistry, 12, 750-756. doi:10.1021/bc010003g
[79] Walsh, G. and Jefferis, R. (2006) Post-translational modifications in the context of therapeutic proteins. Nature Biotechnology, 24, 1241-1252. doi:10.1038/nbt1252
[80] Elliott, S., et al. (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature Biotechnology, 21, 414-421. doi:10.1038/nbt799
[81] Stork, R., et al. (2008) N-glycosylation as novel strategy to improve pharmaco-kinetic properties of bispecific single-chain diabodies. The Journal of Biological Chemistry, 283, 7804-7812. doi:10.1074/jbc.M709179200
[82] Schlapschy, M., et al. (2007) Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: Effects on biophysical prop-erties and prolonged plasma half-life. Protein Engineering Design & Selection, 20, 273-284. doi:10.1093/protein/gzm020
[83] Constantinou, A. (2005) Production and study of polysialylated antibodies for improved cancer therapy. PhD, Imperial College, London.
[84] Brenner, M.B., et al. (1985) Cross-linking of human T cell receptor proteins: Association between the T cell idiotype β subunit and the T3 glycoprotein heavy subunit. Cell, 40, 183-190. doi:10.1016/0092-8674(85)90321-6
[85] Glennie, M.J., et al. (1987) Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. The Journal of Immunology, 139, 2367-2375.
[86] Shalaby, M.R., et al. (1992) Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. The Journal of Experimental Medicine, 175, 217225. doi:10.1084/jem.175.1.217
[87] Presta, L. (2003) Anti-body engineering for therapeutics. Current Opinion in Structural Biology, 13, 519-525. doi:10.1016/S0959-440X(03)00103-9
[88] Chames, P. and Baty, D. (2009) Bispecific antibodies for cancer therapy: The light at the end of the tunnel? Multi-Agent-Based Simulation, 1, 539-547. doi:10.4161/mabs.1.6.10015
[89] Linke, R., et al. (2010) Catumaxomab: Clinical development and future directions. Multi-Agent-Based Simulation, 2, 129-136. doi:10.4161/mabs.2.2.11221
[90] Kontermann, R. (2011) Bispecific antibodies: Developments and current perspectives. In: Kontermann, R.E., Ed., Bispecific Antibodies. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-28. doi:10.1007/978-3-642-20910-9_1
[91] Spencer-Green, G. (2000) Etanercept (enbrel): Update on therapeutic use. Annals Rheumatic Diseases, 59, i46-i49. doi:10.1136/ard.59.suppl_1.i46
[92] Korhonen, R. and Moilanen, E. (2009) Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic & Clinical Pharmacology & Toxicology, 104, 276-284. doi:10.1111/j.1742-7843.2009.00375.x
[93] Hopp, J., et al. (2010) The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Engineering Design & Selection, 23, 827-834. doi:10.1093/protein/gzq058
[94] Peng, L.S., et al. (2001) Mechanism of antitumor activity of a single-chain interleukin-12 IgG3 antibody fusion protein (mscIL-12.her2.IgG3). Journal of Interferon & Cytokine Research, 21, 709-720. doi:10.1089/107999001753124444

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.