Effect of Carbon Graphite on the Crystallization of Andalusite: Application to the Synthesis of Mullite and the Improvement of Refractory Quality

DOI: 10.4236/msa.2013.46044   PDF   HTML     3,492 Downloads   5,092 Views   Citations


Different mixtures of Moroccan silica-alumina geomaterials were used for the preparation of refractory ceramics. A formula of composition (M2) has allowed obtaining a good quality of refractory. Addition of a small quantity of carbon (1%) to the M2 formula has substantially improved the quality of the refractory. The morphological, textural and mineralogical evolution, through SEM and XRD shows that the addition of carbon, which plays a catalytic role, favors the crystallization of andalusite. Then, from 1200°C, the andalusite starts to transform to primary mullite needles. At 1400°C, the mullite becomes the major mineral phase beside cristobalite and vitreous phase.

Share and Cite:

C. Sadik, I. Amrani and A. Albizane, "Effect of Carbon Graphite on the Crystallization of Andalusite: Application to the Synthesis of Mullite and the Improvement of Refractory Quality," Materials Sciences and Applications, Vol. 4 No. 6, 2013, pp. 337-346. doi: 10.4236/msa.2013.46044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Anggono, “Mullite Ceramics: Its Properties, Structure and Synthesis” Jurnal Teknik Mesin, Vol. 7, No. 1, 2005, pp. 1-10.
[2] J. Roy, N. Bandyopadhyay, S. Das and S. Maitra, “Studies on the Formation of Mullite from Diphasic Al2O3-SiO2 Gel by Fourier Transform Infrared Spectroscopy,” Iranian Journal of Chemical Engineering, Vol. 30, No. 1, 2011, pp. 65-71.
[3] M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida and A. Caballero, “XRD Microstructural Analysis of Mullite Obtained from Kaolinite-Alumina Mixtures,” Journal of the European Ceramic Society, Vol. 20, No. 4, 2000, pp. 403-412. doi:10.1016/S0955-2219(99)00183-1
[4] M. A. Sainz, F. J. Serrano, J. Bastidab and A. Caballero, “Microstructural Evolution and Growth of Crystallite Size of Mullite during Thermal Transformation of Kyanite,” Journal of the European Ceramic Society, Vol. 17, No. 11, 1997, pp. 1277-1284. doi:10.1016/S0955-2219(96)00231-2
[5] W. Brostow, T. Datashvili, J. Geodakyan and J. Lou, “Thermal and Mechanical Properties of EPDM/PP + Thermal Shock-Resistant Ceramic Composites,” Journal of Materials Science, Vol. 46, No. 8, 2011, pp. 2445-2455. doi:10.1007/s10853-010-5091-2
[6] D. N. Boccaccini, M. Romagnoli, P. Veronesi, M. Cannio, C. Leonelli, G. Pellacani, T. V. Husovic and A. R. Boccaccini, “Characterization of Thermal Shock Damage in Cordierite-Mullite Refractory Materials by Non-Destructive Methods,” International Journal of Applied Ceramic Technology, Vol. 4, No. 3, 2007, pp. 260-268. doi:10.1111/j.1744-7402.2007.02139.x
[7] C. Baudin, and M. P. Villar, “Microstructural and Microchemical Analysis of the Creep Damage in Mullite Tested in Flexure,” Journal of the European Ceramic Society, Vol. 22, No. 14-15, 2002, pp. 2647-2655. doi:10.1016/S0955-2219(02)00129-2
[8] Andrews, J. Adam and S. K. Y. Gawu, “Development of Fireclay Aluminosilicate Refractory from Lithomargic Clay Deposits,” Ceramics International, 2012, in Press.
[9] J. A. Santillan, H. Balmori-Ramirez and R. C. Bradt, “Dense Mullite from Attrition Milled Kyanite and αAlumina,” Journal of Ceramic Processing Research, Vol. 8, No. 1, 2007, pp. 1-11.
[10] C. Sadik, I. El Amrani and A. Albizane, “Silica-Alumina Refractory Synthesis Based on Moroccan Granitic Geomaterials,” Journal of Chemistry and Chemical Engineering, Vol. 7, No. 2, 2013, pp. 132-136.
[11] C. Sadik, I. El Amrani and A. Albizane, “Composition and Refractory Properties of Mixtures of Moroccan Silica-Alumina Geomaterials and Alumina,” New Journal of Glass and Ceramics, Vol. 3, No. 2, 2013, pp. 59-66.
[12] F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot and F. Valdivieso, “Algerian Kaolinite Used for Mullite Formation,” Applied Clay Science, Vol. 38, No. 3-4, 2008, pp. 304-310. doi:10.1016/j.clay.2007.04.013
[13] M. L. Bouchetou, J. P. Ildefonse, J. Poirier and P. Daniellou, “Mullite Grown from Fired Andalusite Grains: The Role of Impurities and of the High Temperature Liquid Phase on the Kinetics of Mullitization and Consequences on Thermal Shocks Resistance,” Ceramics International, Vol. 31, No. 7, 2005, pp. 999-1005. doi:10.1016/j.ceramint.2004.10.015
[14] W. Pannhorts and H. Schneider, “The High-Temperature Transformation of Andalusite (Al2SiO5) into 3/2 Mullite (3Al2O3-2SiO2) and Vitreous Silica (SiO2),” Mineralogical Magazine, Vol. 42, No. 322, 1978, pp. 195-198. doi:10.1180/minmag.1978.042.322.05
[15] E. Kamseu, C. Leonelli, D. N. Boccaccini, P. Veronesi, P. Miselli, G. Pellacani and U. ChinjeMelo, “Characterization of Porcelain Compositions Using Two China Clays from Cameroon,” Ceramics International, Vol. 33, No. 5, 2007, pp. 851-857. doi:10.1016/j.ceramint.2006.01.025
[16] J. Poirier, “Les Céramiques Réfractaires, de L’élaboration Aux Propriétés d’emploi Glass, Ceramics and Composites,” Glass, Ceramics and Composites, Vol. 1, No. 2, 2011, pp. 28-42.
[17] M. Kolli, M. Hamidouche, G. Fantozzi and J. Chevalier, “Elaboration and Characterization of a Refractory Based on Algerian Kaolin,” Ceramics International, Vol. 33, No. 8, 2007, pp. 1435-1443. doi:10.1016/j.ceramint.2006.06.009
[18] B. Amrane, E. Ouedraogo, B. Mamen, S. Djaknoun and N. Mesrati, “Experimental Study of the Thermo-Mechanical Behaviour of Alumina-Silicate Refractory Materials Based on a Mixture of Algerian Kaolinitic Clays,” Ceramics International, Vol. 37, No. 8, 2011, pp. 3217-3227. doi:10.1016/j.ceramint.2011.05.095
[19] H. G. F. Winkler, “Petrogenesis of Metamorphic Rocks,” Springer-Verlag, New York, 1976.
[20] M. J. Rubenach and T. H. Bell, “Microstructural Controls and the Role of Graphite in Matrix Porphyroblast Exchange during Synkinematic Andalousite Growth in a Granitoid Aureole,” Journal of Metamorphic Geology, Vol. 6, 1988, pp. 651-666.
[21] ASTM C 326-03, “Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays, 15-02, Glass and Ceramic,” 2006..
[22] ASTM, “C838-96 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes,” ASTM International, West Conshohocken, 2010.
[23] ASTM C674-88, “Standard Test Methods for Flexural Properties of Ceramic Whiteware Materials, 15-02, Glass and Ceramic,” 2006.
[24] D. A. Brosnan, “Alumina-Silica Brick,” In: C. A. Schacht, Ed., Refractories Handbook, Clemson, p. 87.
[25] Aras, “The Change of Phase Composition in Kaoliniteand Illite-Rich Clay-Based Ceramic Bodies,” Applied Clay Science, Vol. 24, No. 3-4, 2004, pp. 257-262. doi:10.1016/j.clay.2003.08.012
[26] L. B. Kong, Y. Z. Chen, T. S. Zhang, J. Ma, F. Boey and H. Huang, “Effect of Alkaline-Earth Oxides on Phase Formation and Morphology Development of Mullite Ceramics,” Ceramics International, Vol. 30, No. 7, 2004, pp. 1319-1323. doi:10.1016/j.ceramint.2003.12.019
[27] L. Pavlovic, S. Martinovic and A. Terzic, “Influence of Mineralizers on Mullite Synthesis: Among the Examined Mineralizers, TiO2 Exhibits the Greatest Effect on the Mullitization Process,” Journal of the American Ceramic Bulletin, Vol. 85, No. 11, 2006, pp. 93019305.
[28] Rafaralahy, R. Ignace and R. Roger, “élaboration de Pisés Réfractaires a Madagascar à Partir de Matériaux Locaux Mada-Géo,” Mada-Géo, Vol. 14, 2009, pp. 16-27.
[29] F. J. Torres, E. R. De Sola and J. Alarcon, “Effect of Boron Oxide on the Microstructure of Mullite-Based GlassCeramic Glazes for Floor-Tiles in the CaO-MgO-Al2O3SiO2 System,” Journal of the European Ceramic Society, Vol. 26, No. 12, 2006, pp. 2285-2292. doi:10.1016/j.jeurceramsoc.2005.04.020
[30] V. A. Estani, A. D. Mazzoni and E. F. Aglietti, “Vibrocast Refractories-Influence of Chamotte Grains on Thermo-Chemical Proprieties,” Refractories Applications and News, Vol. 10, No. 4, 2005, pp. 10-13.
[31] “Détermination de la Résistance au Choc Thermique. Compte rendu d’essai No 6/2001/24,” 2001.
[32] W. D. Kingery, “Factors Affecting Thermal Stress Resistance of Ceramic Materials,” Journal of the American Ceramic Society, Vol. 38, No. 1, 1955, pp. 3-15. doi:10.1111/j.1151-2916.1955.tb14545.x
[33] H. B. Ramírezl, E. R. Range, E. R. Garcia and R. C. Bradt, “Dense Mullite from Attrition-Milled Kyanite and Aluminum Metal,” Journal of the American Ceramic Society, Vol. 87, No. 1, 2004, pp. 144-146. doi:10.1111/j.1551-2916.2004.00144.x
[34] V. Viswabaskaran, F. D. Gnanam and M. Balasubramanian, “Mullite from Clay-Reactive Alumina for Insulating Substrate Application,” Applied Clay Science, Vol. 25, No. 1-2, 2004, pp. 29-35. doi:10.1016/j.clay.2003.08.001

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.