Effect of Different Plant Growth Promoting Rhizobacteria on Maize Seed Germination and Seedling Development


Our study aimed at assessing the effects of 3 Plants Growth Promoting Rhizobacteria (PGPR) either singly or in combination on maize growth under laboratory and greenhouse conditions. Seeds were inoculated with single and combined solution of 108 CFU/ml of Rhizobacteria. Seeds were not inoculated for the control variant. The highest germination percentage was obtained with the combination of Pseudomonas fluorescens and Pseudomonas putida. This combination also recorded the best vigor index, plants circumferences number of leaves and the leaf area. The maximal heights of plants were observed with seeds treated with Azospirillum lipoferum with an increase of 37.32%. The highest rates of underground dry matter were recorded with A. lipoferum, with an increase of more than 56% comparative to control, while the combination P. fluorescens and P. putida increased the aerial dry matter of 59.11%. Finally, the highest value of the aerial biomass was obtained with the plants treated with the combination of P. fluorescens and P. putida and the highest underground biomass was obtained with plants treated only with A. lipoferum. These results suggest that specific combinations of PGPR can be considered as efficient alternative biofertilizers to promote maize seed germination, biomass and crop yield.

Share and Cite:

P. Noumavo, E. Kochoni, Y. Didagbé, A. Adjanohoun, M. Allagbé, R. Sikirou, E. Gachomo, S. Kotchoni and L. Baba-Moussa, "Effect of Different Plant Growth Promoting Rhizobacteria on Maize Seed Germination and Seedling Development," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1013-1021. doi: 10.4236/ajps.2013.45125.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. C. Wu, Z. H. Cao, Z. G. Li, K. C. Cheung and M. H. Wong, “Effects of Biofertilizer Containing N-Fixer, P and K Solubilizers and AM Fungi on Maize Growth: A Greenhouse Trial,” Geoderma, Vol. 125, No. 1-2, 2005, pp. 155-166. doi:10.1016/j.geoderma.2004.07.003
[2] A. Salantur, A. Ozturk and S. Akten, “Growth and Yield Response of Spring Wheat (Triticum aestivum L.) to Inoculation with Rhizobacteria,” Plant, Soil and Environment, Vol. 52, No. 3, 2006, pp. 111-118.
[3] A. J. Cattelan, P. G. Hartel and J. J. Fuhrmann, “Screening for Plant Growth Promoting Rhizobacteria to Promote early Soybean Growth,” Soil Science Society of America Journal, Vol. 63, No. 6, 1999, pp. 1670-1680. doi:10.2136/sssaj1999.6361670x
[4] D. Egamberdiyeva, “The Effect of Plant Growth Promoting Bacteria on Growth and Nutrient Uptake of Maize in Two Different Soils,” Applied Soil Ecology, Vol. 36, No. 2-3, 2007, pp. 184-189. doi:10.1016/j.apsoil.2007.02.005
[5] E. Somers, J. Vanderleyden and M. Srinivasan, “Rhizosphere Bacterial Signalling: Alove Parade beneath Our Feet,” Critical Reviews in Microbiology, Vol. No. 4, 30, 2004, pp. 205-240. doi:10.1080/10408410490468786
[6] F. Ahmad, I. Ahmad and M. S. Khan, “Screening of Free- Living Rhizospheric Bacteria for Their Multiple Plant Growth Promoting Activities,” Microbiological Research, Vol. 36, No. 2, 2006, pp. 1-9.
[7] R. Bharathi, R. Vivekananthan, S. Harish, A. Ramanathan and R. Samiyappan, “Rhizobacteria-Based Bio-Formulations for the Management of Fruit Rot Infection in Chillies,” Crop Protection, Vol. 23, No. 6, 2004, pp. 835- 843. doi:10.1016/j.cropro.2004.01.007
[8] Y. C. Jeun, K. S. Park, C. H. Kim, W. D. Fowler and J. W. Kloepper, “Cytological Observations of Cucumber Plants During Induced Resistance Elicited by Rhizobacteria,” Biological Control, Vol. 29, No. 1, 2004, pp. 34- 42. doi:10.1016/S1049-9644(03)00082-3
[9] A. Adesemoye, H. Torbert and J. Kloepper, “Plant Growth- Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers,” Microbial Ecology, Vol. 58, No. 4, 2009, pp. 921-929. doi:10.1007/s00248-009-9531-y
[10] H. El Zemrany, J. Cortet, M. Peter Lutz, A. Chabert, E. Baudoin, J. Haurat, N. Maughan, D. Felix, G. Défago, R. Bally and Y. Moënne-Loccoz, “Field Survival of the Phytostimulator Azospirillum lipoferum CRT1 and Functional Impact on Maize Crop, Biodegradation of Crop Residues, and Soil Faunal Indicators in a Context of Decreasing Nitrogen Fertilization,” Soil Biology and Biochemistry, Vol. 38, No. 7, 2006, pp. 1712-1726. doi:10.1016/j.soilbio.2005.11.025
[11] L. Fuentes-Ramirez and J. Caballero-Mellado, “Bacterial Biofertilizers,” In: Z. A Siddiqui, Ed., PGPR: Biocontrol and Biofertilization, Springer-Verlag, Heidelberg, Berlin, 2006, pp. 143-172. doi:10.1007/1-4020-4152-7_5
[12] T. J. Burr, M. N. Schroth and T. Suslow, “Increased Potato Yields by Treatment of Seed Pieces with Specific Strains of Pseudomonas fluorescens and P. putida,” Phytopathology, Vol. 68, 1978, pp. 1377-1383. doi:10.1094/Phyto-68-1377
[13] B. R. Glick, L. Changping, G. Sibdas and E. B. Dumbroff, “Early Development of Canola Seedlings in the Presence of the Plant GrowthPromoting Rhizobacterium Pseudomonas putida GR12-2,” Soil Biology and Biochemistry, Vol. 29, No. 8, 1997, pp. 1233-1239. doi:10.1016/S0038-0717(97)00026-6
[14] M. I. Frommel, J. Nowak and G. Lazarovits, “Treatment of Potato Tubers with a Growth Promoting Pseudomonas sp.: Plant Growth Responses and Bacterium Distribution in the Rhizosphere,” Plant and Soil, Vol. 150, No. 1, 1993, pp. 51-60. doi:10.1007/BF00779175
[15] J. R. de Freitas and J. J. Germida, “Growth Promotion of Winter Wheat by Pseudomonads fluorescentunder Growth Chamber Conditions,” Soil Biology and Biochemistry, Vol. 24, No. 11, 1992, pp. 1127-1135. doi:10.1016/0038-0717(92)90063-4
[16] R. O. Pedraza, C. H. Bellone, S. Carrizo de Bellone, P. M. F. Boa Sorte and KRdS Teixeira, “Azospirillum Inoculation and Nitrogen Fertilization Effect on Grain Yield and on the Diversity of Endophytic Bacteria in the Phyllosphere of Rice Rainfed Crop,” European Journal of Plant Pathology, Vol. 45, No. 1, 2009, pp. 36-43.
[17] S. Dobbelaere, A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C. Labendera-Gonzalez, J. Caballero-Mellado, F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. Sarig and Y. Okon, “Response of Agronomically Important Crops to Inoculation with Azospirillum,” Australian Journal of Plant Physiology, Vol. 28, No. 9,2001, pp. 871-879. doi:10.1071/PP01074
[18] M. Lucy, E. Reed and B. R. Glick, “Applications of Free Living Plant Growth-Promoting Rhizobacteria,” Anton Leeuw International Journal G, Vol. 86, No. 1, 2004, pp. 1-25. doi:10.1023/B:ANTO.0000024903.10757.6e
[19] C. Jacoud, D. Faure, P. Wadoux and R. Bally, “Development of a Strainspecific Probe to Follow Inoculated Azospirillum lipoferum CRT1 under Field Conditions and Enhancement of Maize Root Development by Inoculation,” FEMS Microbiology Ecology, Vol. 27, No. 1, 1998, pp. 43-51. doi:10.1111/j.1574-6941.1998.tb00524.x
[20] K. Shaukat, S. Affrasayab and S. Hasnain, “Growth Responses of Helianthus annus to plant Growth Promoting Rhizobacteria Used as a Biofertilizer,” International Journal of Agricultural Research, Vol. 1, No. 6, 2006, pp. 573-581. doi:10.3923/ijar.2006.573.581
[21] B. Badu-Apraku and C. G. Yallou, “Registration of Striga- Resistant and Drought-Tolerant Tropical Early Maize Populations TZE-W Pop DT STR C4 and TZE-Y Pop DT STR C4,” Journal of Plant Research, Vol. 3, No. 1, 2009, pp. 86-90.
[22] A. Adjanohoun, L. Baba-Moussa, R. G. kakai, M. Allagbé, B. Yèhouénou, H. Gotoechan-Hodonou, R. Sikirou, P. Sessou and D. Sohounhloué, “Caractérisation des Rhizobactéries Potentiellement Promotrices de la Croissance Végétative du Mais dans Différents Agrosystèmes du Sud-Bénin,” International Journal of Biological and Chemical Sciences, Vol. 5, No. 2, 2011, pp. 433-444. doi:10.4314/ijbcs.v5i2.72073
[23] M. Govindappa, V. Ravishankar, Rai and S. Lokesh, “Screening of Pseudomonas fluorescens Isolates for Biological Control of Macrophomina phaseolina Root-Rot of Safflower,” African Journal of Agricultural Research, Vol. 6, No. 29, 2011, pp. 6256-6266. doi:10.5897/AJAR10.1017
[24] A. Gholami, S. Shahsavani and S. Nezarat, “The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize,” World Academy of Science, Engineering and Technology, Vol. 49, 2009, pp. 19-24.
[25] J. Yadav, J. P. Verma and K. N. Tiwari, “Effect of Plant Growth Promoting Rhizobacteria on Seed Germination and Plant Growth Chickpea (CicerarietinumL.) under in Vitro Conditions,” Biological Forum-Annual of International Journal., Vol.2, No. 2, 2010, pp. 15-18.
[26] H. Boudoudou, R. Hassikou, A. OuazzaniTouhami, A. Bado and A. Douira, “Paramètres Physicochimiques et Flore Fongique des Sols de Rizières Marocaines,”Bulletin de la Société de Pharmacie de Bordeaux, Vol. 148, No. 1-4, 2009, pp. 17-44.
[27] R. H. Bray and L. T. Kurtz, “Determination of Total, Organic and Available Forms of Phosphorus in Soils,” Soil Science, Vol. 59, No. 2, 1945, pp. 39-45. doi:10.1097/00010694-194501000-00006
[28] G. W. Thomas, “Exchangeable Cations,” In: R. H. Miller and D. R. Keeney, Eds., Methods of Soil Analysis, Madison, 1982, pp. 154-157.
[29] A. Walkley and C. A. Black, “An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposal Modification of the Chromic Acid Titration Method,” Soil Science, Vol. 37, No 1, 1934, pp. 29- 38. doi:10.1097/00010694-193401000-00003
[30] A. C. Etèka, “Comtribution des ‘Jachère’ Manioc dans l’Amelioration du Rendement des Cultures et du Prélèvement des Nutriments: Cas de la Succession Culturale Manioc-Mais au Centre du Bénin,” Thèse de DEA, Université d’abomey-Calavi, Abomey-Calavi, 2005.
[31] F. Ruget, R. Bonhomme and M. Chartier, “Estimation Simple de la Surface Foliaire de Plantes de Mais en Croissance,” Agronomie, Vol. 16, No. 9, 1996, pp. 553- 562. doi:10.1051/agro:19960903
[32] Z. Fatima, M. Saleemi, M. Zia, T. Sultan, M. Aslam, R. Rehman and M. FayyazChaudhary, “Antifungal Activity of Plant Growth-Promoting Rhizobacteria Isolates against rhizoctoniasolani in Wheat,” African Journal of Biotechnology, Vol. 8, No. 2, 2009, pp. 219-225.
[33] F. J. Anzala, “Contrôle de la Vitesse de Germination chez le Mais (Zea mays) : Etude de la Voie de Biosynthèse des Acides Aminésissus de l’Aspartate et Recherche de QTLs,” Thèse de Doctorat, Université de Angers, Angers, 2006.
[34] A. Adjanohoun, M. Allagbé, H. Gotoechan-Hodonou, K. K. Dossa, R. Aguégué, J. Adeyemi, M. Bossou, S. Babio, L. Baba-Moussa and R. L. Glèlè-Kakai, “Evaluation des Effets des Rhizobactéries Promotrices de la Croissance Végétative sur la Croissance du Mais en Condition de Serre au Sud-Bénin,” Bulletin de la Recherche Agronomique du Bénin, Vol.70, 2012, pp. 60-66.
[35] H. Asghar, Z. Zahir, M. Arshad and A. Khaliq, “Relationship between in VitroProduction of Auxins by Rhizobacteria and Their Growth-Promoting Activities in Brassica juncea L.,” Biology Fertility of Soils, Vol. 35, No. 4, 2002, pp. 231-237. doi:10.1007/s00374-002-0462-8
[36] K. Shaukat, S. Affrasayab and S. Hasnain, “Growth Responses of Triticum aestivum to Plant Growth Promoting Rhizobacteria Used as a Biofertilizer,” Research Journal of Microbiology, Vol. 1, No. 4, 2006, pp. 330-338. doi:10.3923/jm.2006.330.338
[37] I. A. Siddiqui and S. S. Shaukat, “Mixtures of Plant Disease Suppressive Bacteria Enhance Biological Control of Multiple Tomato Pathogens,” Biology and Fertility of Soils, Vol. 36, No. 4, 2002, pp. 260-268. doi:10.1007/s00374-002-0509-x
[38] R. Cakmakci, F. Donmez, A. Aydin and F. Sahin, “Growth Promotion of Plants by plant Growth-Promoting Rhizobacteria under Greenhouse and Two Different Field Soil Conditions,” Soil Biology and Biochemistry, Vol. 38, No. 6, 2006, pp. 1482-1487. doi:10.1016/j.soilbio.2005.09.019
[39] G. I. Burd, D. G. Dixon and B. R Glick, “Plant Growth Promoting Rhizobacteria That Decrease Heavy Metal Toxicity in Plants,” Canadian Journal of Microbiology, Vol. 33, No. 3, 2000, pp. 237-245. doi:10.1139/w99-143
[40] V. Gravel, H. Antoun and R. J. Tweddell, “Growth Stimulation and Fruit Yield Improvement of Greenhouse Tomato Plants by Inoculation with Pseudomonas putida or Trichoderma atroviride: Possible Role of Indole Acetic Acid (IAA),” Soil Biology and Biochemistry, Vol. 39, No. 8, 2007, pp. 1968-1977. doi:10.1016/j.soilbio.2007.02.015
[41] A. A. Z. Shaharoona, Muhammad B. Arshazachir and A. Azeem Kalid, “Performance of Pseudomonas spp. Containing Accdeaminase for Improving Growth and Yield of Maize (Zea mays L.) in the Presence of Nitrogenous Fertilizer,” Soil Biology and Biochemistry, Vol. 38, No. 9, 2006, pp. 2971-2975. doi:10.1016/j.soilbio.2006.03.024
[42] J. Kozdroja, J. T. Trevorsb and J. D. van Elsasc, “Influence of Introduced Potential Biocontrol Agents on Maize Seedling Growth and Bacterial Community Structure in the Rhizosphere,” Soil Biology and Biochemistry, Vol. 36, No. 11, 2004, pp. 1775-1784. doi:10.1016/j.soilbio.2004.04.034
[43] H. Antoun and J. W. Kloepper, “Plant Growth-Promoting Rhizobacteria (PGPR),” In: S. Brenner and J. H. Miller, Ed., Encyclopedia of Genetics, Academic Press, New York, 2001, pp. 1477-1480.
[44] H. Antoun, C. J. Beauchamp, N. Goussard, R. Chabot and R. Lalande, “Potential of Rhizobium and Bradyrhizobium Species as Plant Growth Promoting Rhizobacteria on Non-Legumes: Effect on Radishes (Raphanus sativus L.),” Plant and Soil, Vol. 204, No. 1, 1998, pp. 57-67. doi:10.1023/A:1004326910584
[45] A. Vikram, “Efficacy of Phosphate Solubilizing Bacteria Isolated from Vertisols on Growth and Yield Parameters of Sorghum,” Research Journal of Microbiology, Vol. 2, No. 7, 2007, pp. 550-559. doi:10.3923/jm.2007.550.559

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.