Therapeutic effects of human umbilical cord-derived mesenchymal stem cells against acute tubular necrosis quantified through measures of iNOS, BMP-7 and Bcl-2


Introduction: Acute tubular necrosis (ATN) is the most prevalent cause of acute renal failure (ARF). Mesenchymal stem cell transplantation has been studied as a potential treatment for renal dysfunction due to ATN. Inducible nitric oxide synthase (iNOS), bone morphogenetic protein-7 (BMP-7) and B-cell lymphoma 2 (Bcl-2) are surrogate markers of renal tubular epithelial regeneration and subsequent recovery of renal function following ATN. Methods: Serum creatinine (Scr) and blood urea nitrogen (BUN), as well as expression of iNOS, BMP-7 and Bcl-2 in gentamycin-induced ATN rat kidneys was investigated after human umbilical cord-derived mesenchymal stem cell (HUC-MSC) transplantation. Immunohistochemical staining was performed in 3 groups of rats: gentamycin-induced ATN treated with HUC-MSC, gentamycin-induced ATN without HUC-MSC, and untreated rats not receiving any treatments. Results: HUC-MSC transplantation led to a reduction in Scr and BUN in the kidneys of rats with gentamycin-induced ATN. Expression of iNOS in the HUC-MSC treated group occurred later and the expression levels were much lower during gentamycin-induced ATN compared to rats with ATN that were not treated with HUC-MSC. The expression of BMP-7 and Bcl-2 in the MSC-transplanted group was significantly increased compared to both control groups of rats with injured and healthy renal tubules. Conclusions: HUC-MSCs induce renal protection in a rat model of gentamycin-induced ATN, which is associated with reduced iNOS expression and up-regulation of Bcl-2 and BMP-7.

Share and Cite:

Li, F. , Xiong, F. , Zhang, Y. , Li, Y. , Zhao, H. , Cho, S. , Ichim, T. , Yang, X. and Hu, X. (2013) Therapeutic effects of human umbilical cord-derived mesenchymal stem cells against acute tubular necrosis quantified through measures of iNOS, BMP-7 and Bcl-2. Open Journal of Regenerative Medicine, 2, 31-38. doi: 10.4236/ojrm.2013.22006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pruchnicki, M.C. and Dasta, J.F. (2002) Acute renal failure in hospitalized patients. The Annals of Pharmacotherapy, 36, 1261-1267. doi:10.1345/aph.1A339
[2] Kelly, K.J. and Molitoris, B.A. (2000) Acute renal failure in the new millennium: Time to consider combination therapy. Seminars in Nephrology, 20, 4-19.
[3] Chhabra, P. and Brayman, K.L. (2009) The use of stem cells in kidney disease. Current Opinion in Organ Transplantation, 14, 72-78. doi:10.1097/MOT.0b013e328320d2f5
[4] Benjamin, D.H. and Joseph, V.B. (2008) Mesenchymal stem cells in acute kidney injury. Annual Review of Medicine, 59, 311-325. doi:10.1146/
[5] Hiroshi, A., Daniel, R.M. and Kirstan, K.M. (2010) Therapeutic application of mesenchymal stem cells to repair kidney injury. Journal of Urology, 184, 26-33. doi:10.1016/j.juro.2010.03.050
[6] Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., Rottoli, D., Angioletti, S., Benigni, A., Perico, N., Alison, M. and Remuzzi, G. (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. Journal of the American Society of Nephrology, 15, 1794-1804. doi:10.1097/01.ASN.0000128974.07460.34
[7] Herrera, M.B., Bussolati, B., Bruno, S., Fonsato, V., Romanazzi, G.M. and Camussi, G. (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. International Journal of Molecular Medicine, 14, 1035-1041.
[8] Imberti, B., Morigi, M., Tomasoni, S., Rota, C., Corna, D., Longaretti, L., Rottoli, D., Valsecchi, F., Benigni, A., Wang, J., Abbate, M., Zoja, C. and Remuzzi, G. (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. Journal of the American Society of Nephrology, 18, 2921-2928. doi:10.1681/ASN.2006121318
[9] Fujigaki, Y., Sakakima, M., Sun, Y., Goto, T., Ohashi, N., Fukasawa, H., Tsuji, T., Yamamoto, T. and Hishida, A. (2007) Immunohistochemical study on caveolin-1alpha in regenerating process of tubular cells in gentamicin-induced acute tubular injury in rats. Virchows Archiv, 450, 671-681. doi:10.1007/s00428-007-0417-4
[10] Goto, T., Fujigaki, Y., Sun, D.F., Yamamoto, T. and Hishida, A. (2004) Plasma protein extravasation and vascular endothelial growth factor expression with endothelial nitric oxide synthase induction in gentamicin-induced acute renal failure in rats. Virchows Archiv, 444, 362-374. doi:10.1007/s00428-004-0977-5
[11] Qian, J.Q. (2004) Internal medicine. 6th Edition, The People’s Medical Publishing House, Beijing.
[12] Sun, L.Y., Wang, D.D., Liang, J., Zhang, H.Y., Feng, X.B., Wang, H., Hua, B.Z., Liu, B.J., Ye, S.Q., Hu, X., Xu, W.R., Zeng, X.F., Hou, Y.Y., Gilkeson, G.S., Silver, R.M., Lu, L.W. and Shi, S.T. (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis & Rheumatism, 62, 2467-2475. doi:10.1002/art.27548
[13] da Silva Meirelles, L., Chagastelles, P.C. and Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119, 2204-2213. doi:10.1242/jcs.02932
[14] Tsai, P.C., Fu, T.W., Chen, Y.M., Ko, T.L., Chen, T.H., Shih, Y.H., Hung, S.C. and Fu, Y.S. (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15, 484-495. doi:10.1002/lt.21715
[15] Caplan, A.L. (1991) Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641-650. doi:10.1002/jor.1100090504
[16] Kale, S., Karihaloo, A., Clark, P.R., Kashgarian, M., Krause, D.S. and Cantley, L.G. (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. Journal of Clinical Investigation, 112, 42-49.
[17] Buck, K.S., Foster, E.M., Watson, D., Barratt, J., Pawluczyk, I.Z., Knight, J.F., Feehally, J. and Allen, A.C. (2002) Expression of T cell receptor variable families by bone marrow gamma delta T cells in patients with IgA nephropathy. Clinical & Experimental Immunology, 127, 527-532. doi:10.1111/j.1365-2249.2002.01784.x
[18] Liu, G.F., Qu, S.L., Yao, P., He, L., Zheng, R.F., Cai, Y.R., Li, S.H. and Zhao, Y.N. (2006) The relations between iNOS and ischemic ARF, as well as the effect of extrinsic L-arginine on ARF. Sichuan Medical Journal, 27, 13-15.
[19] Goligorsky, M.S., Brodsky, S.V. and Noiri, E. (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney International, 61, 855-861.
[20] Martin, M.U. and Wesche, H. (2002) Summary and comparison of the signaling mechanisms of the Toll/interleuk in-1 receptor family. Biochimica et Biophysica Acta, 1592, 265-280. doi:10.1016/S0167-4889(02)00320-8
[21] Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S. and Bhardwaj, N. (2000) Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. The Journal of Experimental Medicine, 191, 423-434. doi:10.1084/jem.191.3.423
[22] Huang, J.E., Li, X.K., Yang, Z.P. and Liangk, Z.D. (2002) Changes of cellular ultrastructure on protective and therapeutic effect of bFGF acting against gentamicin nephrotoxicity. Anatomy Research, 24, 110-112.
[23] Ozkaynak, E., Rueger, D.C., Drier, E.A., Corbett, C., Ridge, R.J., Sampath, T.K. and Oppermann, H. (1990) OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO Journal, 9, 2085-2093.
[24] Gould, S.E., Day, M., Jones, S.S. and Dorai, H. (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney International, 61, 51-60. doi:10.1046/j.1523-1755.2002.00103.x
[25] Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F. and Kalluri, R. (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Medicine, 7, 964-968. doi:10.1038/nm888
[26] Lee, H.T., Xu, H., Siegel, C.D. and Krichevsky, I.E. (2003) Local anesthetics induce human renal cell apoptosis. American Journal of Nephrology, 23, 129-139. doi:10.1159/000069304
[27] Hauser, P. and Oberbauer, R. (2002) Tubular apoptosis in the pathophysiology of renal disease. Wiener Klinische Wochenschrift, 114, 671-677.
[28] Zhou, H., Kato, A., Yasuda, H., Odamaki, M., Itoh, H. and Hishida, A. (2003) The induction of heat shock protein-72 attenuates cisplatin-induced acute renal failure in rats. Pflügers Archiv, 446, 116-124.
[29] Huang, L.H., Zhang, G.Q., Ye, R.G., Li, Y.J., Chen, X.H. and Guan, W.M. (2000) The role of cell proliferation and apoptosis in renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Chinese Journal of Nephrology, 16, 24-27.
[30] Hale, A.J., Smith, C.A., Sutherland, L.C., Stoneman, V.E., Longthorne, V.L., Culhane, A.C. and Williams, G.T. (1996) Apoptosis: Molecular regulation of cell death. European Journal of Biochemistry, 236, 1-26. doi:10.1111/j.1432-1033.1996.00001.x
[31] Korsmeyer, S.J. (1999) Bcl-2 gene family and the regulation of programmed cell death. Cancer Research, 59, 1693-1700.
[32] Tsujimoto, Y., Shimizu, S., Eguchi, Y., Kamiike, W. and Matsuda, H. (1997) Bcl-2 and Bcl-XL block apoptosis as well as necrosis possible involvement of common mediators in apoptosic and necrotic signal transduction pathways. Leukemia, 11, 380-382.
[33] Takahashi, M., Saito, H., Okuyama, T., Miyashita, T., Kosuga, M., Sumisa, F., Yamada, M., Ebinuma, H. and Ishii, H. (1999) Overexpression of Bcl-2 protects human hepatoma cells from Fas-antibody-mediated apoptosis. Journal of Hepatology, 31, 315-322. doi:10.1016/S0168-8278(99)80230-X

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.