Gold Mineralization Channels Identification in the Tindikala-Boutou Area (Eastern-Cameroon) Using Geoelectrical (DC & IP) Methods: A Case Study


To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Ngoura area (Tindikala-Boutou villages) have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistivimeter Syscal Junior 48 (IRIS Instrument) which uses the electrical current. The data have been processed and modelled with Res2Dinv and Winsev softwares then interpolated with Surfer software. Electrical methods used are the Direct current (DC) and the Induced Polarization (IP). Interpretation and analyses of results from each investigation method highlight weak zones or conductive discontinuities and mineralized zones. Conductive zones have been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W. The mineralization within it is N-S and characterized by high values of chargeability, essentially in the eastern part of the area under study. This mineralization proves the presence of metalliferous or sulphide heaps disseminated in weathered quartz veins which cross shear zones. Also, the poor mineralization and conductive structures in shear zones characterize the groundwater zones. The intense activities of gold washers encountered in the area enable to link that mineralization to gold within quartz veins. The near surface gold mineralization is eluvial or alluvial, and in depth this mineralization is primary.

Share and Cite:

D. Gouet, T. Ndougsa-Mbarga, A. Meying, S. Assembe and A. Pepogo, "Gold Mineralization Channels Identification in the Tindikala-Boutou Area (Eastern-Cameroon) Using Geoelectrical (DC & IP) Methods: A Case Study," International Journal of Geosciences, Vol. 4 No. 3, 2013, pp. 643-655. doi: 10.4236/ijg.2013.43059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Kim, M. J. Yoon, S. G. Kim and D. J. Kwon, “Exploration Report Colomine Placer Gold Project Cameroon,” Geotech Consultant Co., Ltd., Seoul, 2009, p. 87.
[2] M. Cornachia and R. Dars, “Un Trait Majeur du Continent Africain. Les Linéaments Centrafricains du Cameroun au Golfe d’Aden,”Bulletin of Social Géology, Vol. 7, No. 1, 1983, pp. 102-109.
[3] P. Rolin, “La Zone de Décrochement Panafricain des Oubanguides en République Centrafricaine,” C.R. Academy Scioety, Paris, 1995.
[4] H. Mvondo, S. W. J Den-Brok and J. Mvondo-Ondoa, “Evidence for Symmetric Extension and Exhumation of the Yaoundé Nappe (Pan-African Fold Belt, Cameroon),” Journal of African Earth Sciences, Vol. 35, No. 3, 2003, pp. 215-231. doi:10.1016/S0899-5362(03)00017-4
[5] H. Mvondo, S. Owona, J. Mvondo-Ondoa and J. Essono, “Tectonic Evolution of the Yaoundé Segment of the Neoproterozoic Central African Orogenic Belt in Southern Cameroon,” Canadia Journal of Earth Sciences, Vol. 44, No. 1, 2007, pp. 433-444. doi:10.1139/e06-107
[6] J. B. Olinga, J. E. Mpesse, D. Minyem, V. Ngako, T. Ndougsa-Mbarga and G. E. Ekodeck, “The Awaé-Ayos Strike-Slip Shear Zones (Southern-Cameroon): Geometry, Kinematics and Significance in the Late Panafrican Tectonics,” Neues Jahrbuch für Geologie und Palaontologie-Abhandlungen, Vol. 257, No. 1, 2010, pp. 1-11.
[7] J. M. Regnoult, “Synthèse Géologique du Cameroun,” 1986.
[8] J. Vairon, A. Edimo, Y. Simeon and P. Vadala, “Protocole D’accord ‘Pour la Recherche des Minéralisations d’or Dans la Province Aurifère de l’Est’ Cameroun,” Rapport du BRGM, Mission Or Batouri, Deuxième et Troisième phase, 1986.
[9] J. Gazel and C. Giraudie, “Notice Explicative sur la Région Abong-Mbang Ouest de la Carte Géologique de Reconnaissance,”Mémoire du BRGM, No 92, Direction des Mines et Géologie, Yaoundé, Cameroun, 1965, 29 p.
[10] A. Meying, T. Ndougsa Mbarga and E. Manguelle-Dicoum, “Evidence of Fractures from the Image of the Subsurface in the Akojolinga-Ayos Area (Cameroon) by Combining the Classical and the Bostick Approaches in the Interpretation of Audio-Magnetotelluric Data,” Journal of Geology and Mining Research, Vol. 1, No. 8, 2009, pp. 159-171.
[11] T. Ndougsa-Mbarga, A. Meying, D. Bisso, D. Y. Layu, K. K. Sharma and E. Manguelle-Dicoum, “Audiomagneto-tellurics (AMT) Soundings Based on the Bostick Approach and Evidence of Tectonic Features along the Northern Edge of the Congo Craton, in the Messamena/Abong-Mbang Area (Cameroon),” Journal of Industrial Geophysical Union, Vol. 15, No. 3, 2011, pp. 145-159.
[12] P. Keary and M. Brooks, “An Introduction to Geophysical Exploration,” 2nd Edition, Blackwell Scientific Publications, London, 1991, 254 p.
[13] D. S. Parasnis, “Principles of Applied Geophysics,” 5th Edition, Chapman and Hall, London, England, 1997, pp. 104-176.
[14] S. H. Ward, “Resistivity and Induced Polarization Methods,” In: S. H. Ward, Ed., Geotechnical and Environmental Geophysics, Society of Exploration Geophysicists, Tulsa, 1990, pp. 147-190.
[15] J. Kiberu, “Induced Polarization and Resistivity Measurements on a Suite of near Surface Soil Samples and Their Empirical Relationships to Selected Measured Engineering Parameters,” MSc Thesis Submitted at ITC, Enschede, 2002.
[16] D. Chapellier, “Prospection Electrique en Surface. Cours de Géophysique,” Université de Lausanne, Institut Francais de Pétrole, 2000/2001.
[17] J. B. Fink, E. O. McAlester., B.K. Sternberg, S.H.Ward and W.G. Wieduwilt, “Induced Polarization, Applications and Case Studies,” Society of Exploration Geophysicists, Tulsa, Oklahoma, 1990, pp. 414.
[18] J. S. Sumner, “Principles of Induced Polarization for Geophysical Exploration,” Elsevier, Amsterdam, 1976.
[19] M. H. Loke, “Electrical Imaging Surveys for Environmental and Engineering Studies. A Practical Guide to 2-D and 3-D surveys,” 2000.
[20] M. H. Loke, “Res2Dinv ver. 3.59 for Windows XP/Vista/7, 2010. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Geoelectrical Imaging 2D & 3D Geotomo Software,” 2010.
[21] M. H. Loke and R. D. Barker, “Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method,” Geophysical Prospecting, Vol. 44, No. 1, 1996, pp. 131-152. doi:10.1111/j.1365-2478.1996.tb00142.x
[22] J. Jenny and M. Borreguero, “Winsev 5, 1-D Inversion Software,” 1999.
[23] Surfer, “Version 7.00, Surface Mapping System Copyright © 1993-1999,” Golden Software, Inc., Colorado, 1866.
[24] M. A. Meju, “Geoelectromagnetic Exploration for Natural Resources: Models, Case Studies and Challenges,” Surveys in Geophysics, Vol. 23, No. 2-3, 2002, pp. 133-205. doi:10.1023/A:1015052419222
[25] I. F. Louis, D. Raftopoulos, I. Goulis and F. I. Louis, “Geophysical Imaging of Faults and Fault Zones in the Urban Complex of Ano Liosia Neogene Basin, Greece: Synthetic Simulation Approach and Field Investigations,” Journal of Electrical & Electronics Engineering, 2002, pp. 269-285.
[26] J. C. Egbai, “Vertical Electrical Sounding for the Investigation of Clay Deposit in Orerokpe, Delta State,” Journal of Emerging Trends in Engineering and Applied Sciences, Vol. 2, No. 2, 2011, pp. 260-265.
[27] J. O. Coker, “Vertical Electrical Sounding (VES) Methods to Delineate Potential Groundwater Aquifers in Akobo Area, Ibadan, South-Western, Nigeria,” Journal of Geology and Mining Research, Vol. 4, No. 2, 2012, pp. 35-42.
[28] S. Mbom-Abane, “Investigation Géophysique en Bordure du Craton du Congo (région d’Abong-Mbang/Akonolinga, Cameroun) et Implications Structurales,” Thèse Doctorat d’Etat ès Sciences, University, de Yaoundé I, Fac. Sciences, 1997.
[29] J. R. Holliday and D. R Cooke, “Advances in Geological Models and Exploration Methods for Copper ± Gold Porphyry Deposits,” Ore Deposits and Exploration Technology, Paper 53, 2007, pp. 791-809.
[30] H. Salmirinne and P. Turunen, “Ground Geophysical Characteristics of Gold Targets in the Central Lapland Greenstone Belt,” Geological Survey of Finland, Special Paper 44, 2007, pp. 209-223.
[31] A. M. Ngando, Nouayou R., T. C. Tabod and E. ManguelleDicoum, “Evidence for Precambrian Faulting in the Tibati Adamawa Region of Cameroon Using the Audio-magnetotelluric Method,” Geofísica International, Vol. 50, No. 2, 2011, pp. 129-146.
[32] D. L. Campbell and D. V. Fitterman, “Geoelectrical Methods for Investigating Mine Dumps,” Proceedings of the 5th International Conference on Acid Rock Drainage (ICARD 2000), Denver, 21-24 May 2000, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, 2000, pp. 1513-1523.
[33] T. Dahlin, H. Rosquist and V. Leroux, “Resistivity—IP for Landfill Application,” First Break, Vol. 28, No. 8, 2010, pp. 101-105.
[34] Yuval and D. W. Oldenburg, “DC Resistivity and IP Methods in Acid Mine Drainage Problems: Results from the Copper Cliff Mine Tailings Impoundments,” Journal of Applied Geophysics, Vol. 34, No. 3, 1996, pp. 187-198. doi:10.1016/0926-9851(95)00020-8
[35] M. H. Biste, R. Bufler and G. Friedrich, “Geology and Exploration of Gold Placer Deposits the Precambrian Shield of Eastern Bolivia,” In: O. Dpjdp-Dtcd, Ed., International Symposium on Alluvial Gold Placers, La Paz, 1991, pp. 148-158.
[36] M. N. Tijani, O. O. Osinowo and O. Ogedengbe, “Mapping of Sub-Surface Fracture Systems Using Integrated Electrical Resistivity Profiling and VLF-EM Methods: A Case Study of Suspected Gold Mineralization,” RMZ— Materials and Geoenvironment, Vol. 56, No. 4, 2009, pp. 415-436.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.