Correlative Analysis of Data and Functions of Neuronal Synapse


Until recently, the synaptic transmission and excitatory amino acid transporters activation of neurons are very well discussed in the previous studies and are considered to be the two distinct features of Synapse. It is also found that a large number of interactions take place in the domain of ionic exchanges and protein interactions in synapses. It is evolutionary to have destined to release of Neurotransmitters to conduct an impulse to the other consecutive neurons, which forms the most important characteristic of synapse. From the popular perspective, it has been identified that detailed theoretical closer correlation of data produced through various studies about synapse can unravel many mysteries related to functions of synapse. Hence, this research paper tries to concentrate on a selected group of prominent characteristics and properties of synapse and also highlights some noteworthy discoveries, emphasizing the influential capabilities of them in the thought process and improving the knowledge of the field. It also highlights the expressive properties and forms of synapse brought out through the evidences available in sparse to dense data in a correlational way.

Share and Cite:

T. Nair and A. Jerald, "Correlative Analysis of Data and Functions of Neuronal Synapse," Journal of Behavioral and Brain Science, Vol. 3 No. 2, 2013, pp. 276-287. doi: 10.4236/jbbs.2013.32027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Rollenhagen, K. Satzler, E. P. Rodriguez, P. Jonas, M. Frotscher and J. H. R. Lübke, “Structural Determinants of Transmission at Large Hippocampal Mossy Fiber Synapses,” The Journal of Neuroscience, Vol. 27, No. 39, 2007, pp. 10434-10444. doi:10.1523/JNEUROSCI.1946-07.2007
[2] R. W. Guillery, “Observations of Synaptic Structures: Origins of the Neuron Doctrine and Its Current Status,” Philosophical Transactions on Royal Society Lond B Biological Science, Vol. 360, No. 1458, 2005, pp. 1281-307.
[3] W. X. Zhang, Y. Zhang, H. Zheng, C. Zhang, W. Xiong, J. G. Olyarchuk, M. Walker, W. F. Xu, M. Zhao, S. Q. Zhao, Z. Zhou and L. P. Wei, “A Synapse Protein DataBase Based on Synapse Ontology 2006,” Nucleic Acids Research, Vol. 35, No. S1, 2006, pp. D737-D741. doi:10.1093/nar/gkl876
[4] S. J. Martin, P. D. Grimwood and R. G. M. Morris, “Synaptic Plasticity and Memory: An Evaluation of the Hypothesis,” Annual Review of Neuroscience, Vol. 23, 2000, pp. 649-711. doi:10.1146/annurev.neuro.23.1.649
[5] J. Breustedt, A. Gundlfinger, F. Varoqueaux, K. Reim, N. Brose and D. Schmitz, “Munc13-2 Differentially Affects Hippocampal Synaptic Transmission and Plasticity,” Cerebral Cortex, Vol. 20, 2011, pp. 1109-1120.
[6] S. I. Cohen-Matsliah, H. Motanis, K. Rosenblum and E. Barkai, “A Novel Role for Protein Synthesis in Long-Term Neuronal Plasticity: Maintaining Reduced Postburst Afterhyperpolarization,” The Journal of Neuroscience, Vol. 30, No. 12, 2010, pp. 4338-4342. doi:10.1523/JNEUROSCI.5005-09.2010
[7] A. B. Jerald, T. R. G. Nair and E. Rajasekaran, “Evaluation of the Structural Disorder of the Protein FMR1 with Carbon Composition,” 2nd Annual Intrnational Conference on Advances in Biotechnology, 2012.
[8] D. C. Crawford, C. Y. Chang, K. L. Hyrc and S. Mennerick, “Calcium-Independant Inhibitory G-Protein Signaling Induces Persistent Presynaptic Muting of Hippocampal Synapses,” Journal of Neuroscience, Vol. 31, No. 3, 2011, pp. 979-991. doi:10.1523/JNEUROSCI.4960-10.2011
[9] K. L. Moulder, J. P. Meeks, A. A. Shute, C. K. Hamilton, G. de Erausquin and S. Mennerick, “Plastic Elimination of Functional Glutamate Release Sites by Depolarization,” Neuron, Vol. 42, No. 3, 2004, pp. 423-435. doi:10.1016/S0896-6273(04)00184-9
[10] K. L. Moulder, X. Jiang, C. Chang, A. A. Taylor, A. M. Benz, A. C. Conti, L. J. Muglia and S. Mennerick, “A Specific Role for Ca2-Dependant Adenylyl Cyclases in Recovery from Adaptive Presynaptic Silencing,” Journal of Neuroscience, Vol. 28, No. 20, 2008, pp. 5159-5168. doi:10.1523/JNEUROSCI.5317-07.2008
[11] R. C. Malenka and R. A. Nicoll, “Silent Synapses Speak Up,” Neuron, Vol. 19, No. 3, 1997, pp. 473-476. doi:10.1016/S0896-6273(00)80362-1
[12] L. L. Voronin and E. Cherubini, “Deaf, Mute and Whispering’ Silent Synapses: Their Role in Synaptic Plasticity,” Journal of Physiology, Vol. 557, 2003, pp. 3-12. doi:10.1113/jphysiol.2003.058966
[13] D. Atasoy and E. T. Kavalali, “Presynaptic Unsilencing: Searching for a Mechanism,” Neuron, Vol. 50, No. 3, 2006, pp. 345-346. doi:10.1016/j.neuron.2006.04.018
[14] R. R. Linas, “The Contribution of Santiago Raman Y Cajal to the functional Neuroscience,” Nature, Vol. 4, 2003.
[15] M. Sheng and C. Sala, “PDZ Domains and the Organization of Supramolecular Complexes,” Annuals of Review Neuroscience, Vol. 24, 2001, pp. 1-29. doi:10.1146/annurev.neuro.24.1.1
[16] H. J. Kreienkamp, “Organisation of G-Protein-Coupled Receptor Signalling Complexes by Scaffolding Proteins,” Current Opinion in Pharmacology, Vol. 2, No. 5, 2002, pp. 581-586. doi:10.1016/S1471-4892(02)00203-5
[17] T. M. Boeckers, “The Postsynaptic Density,” Cell Tissue Research, Vol. 326, No. 2, 2006, pp. 409-422. doi:10.1007/s00441-006-0274-5
[18] A. Haeckel, R. Ahuja, E. D. Gundelfinger, B. Qualmann and M. M. Kessels, “The Actin-Binding Protein Abp1 Controls Dendritic Spine Morphology and Is Important for Spine Head and Synapse Formation,” The Journal of Neuroscience, Vol. 28, No. 40, 2008, pp. 10031-10044.
[19] C. Dillon and Y. Goda, “The Actin Cytoskeleton: Integrating form and Function at Synapse,” Annuals of Review Neuroscience, Vol. 28, 2005, pp. 25-55. doi:10.1146/annurev.neuro.28.061604.135757
[20] V. Schubert, J. S. Da Silva and C. G. Dotti, “Localized Recruitment and Activation of RhoA Underlies Dendritic Spine Morphology in a Glutamate Receptor-Dependant Manner,” Journal of Cell Bi-ology, Vol. 172, No. 3, 2006, pp. 453-467. doi:10.1083/jcb.200506136
[21] Tada and M. Sheng, “Molecular Mechanisms of Dendritic Spine Morphogenesis,” Current Opinion in Neurobiology, Vol. 16, No. 1, 2006, pp. 95-101. doi:10.1016/j.conb.2005.12.001
[22] G. Roussignol, F. Ango, S. Romorini, J. C. Tu, C. Sala, P. F. Worley, J. Bockaert and L. Fagni, “Shank Expression Is Sufficient to Induce Functional Dendritic Spine Synapses in Aspiny Neurons,” Journal of Neuroscience, Vol. 25, No. 14, 2005, pp. 3560-3570. doi:10.1523/JNEUROSCI.4354-04.2005
[23] K. Shen and C. W. Cowan, “Guidance Molecules in Synapse Formation and Plasticity,” Cold Spring Harbor Laboratory Press, 2010. doi:10.1101/cshperspect.a001842
[24] H. J. Kim and S. A. Thayer, “Lithium Increases Synapse Formation between Hip-pocampal Neurons by Depleting Phosphoinositides,” Molecular Pharmacology, Vol. 75, No. 5, 2009, pp. 1021-1030. doi:10.1124/mol.108.052357
[25] P. G. Haydon, “GLIA: Listening and Talking to the Synapse,” National Review of Neuroscience, Vol. 2, 2001, pp. 185-193. doi:10.1038/35058528
[26] R. D. Fields and B. Stevens-Graham, “New Insights into Neuron-Glia Communication,” Science, Vol. 298, No. 5593, 2002, pp. 556-562. doi:10.1126/science.298.5593.556
[27] D. S. Auld and R. Robitaille, “Perisynaptic Schwann Cells at the Neuromuscular Junction: Nerveand Activity-Dependant Contributions to Synaptic Efficacy, Plasticity, and Reinnervation,” The Neuroscientist, Vol. 9, No. 2, 2003, pp. 144-157. doi:10.1177/1073858403252229
[28] G. I. Hatton and V. Parpura, “Glial Neuronal Signaling. Kluwer Academic, Boston, 2004. doi:10.1007/978-1-4020-7937-5
[29] N. J. Allen and B. A. Barres, “Signaling between Glia and Neurons: Focus on Synaptic Plasticity,” Current Opinion in Neurobiology, Vol. 15, No. 5, 2005, pp. 542-548. doi:10.1016/j.conb.2005.08.006
[30] C.-P. Ko, Y. S. Sugiura and Z. Feng, “The Biology of Perisynaptic (Terminal) Schwann Cells,” In: P. J. Armati, Ed., The Biology of Schwann Cells: Development, Differentiation and Immunomodulation, 2007, pp. 72-99. doi:10.1017/CBO9780511541605.006
[31] Z. F. Kisvárday, et al., “Synaptic Targets of HRP-Filled Layer III Pyramidal Cells in the Cat Striate Cortex,” Experimental Brain Research, Vol. 64, No. 3, 1986, pp. 541-552. doi:10.1007/BF00340492
[32] A. Stepanyants and D. B. Chklovskii, “Neurogeometry and Potential Synaptic Connectivity,” Trends Neuroscience, Vol. 28, No. 7, 2005, pp. 387-394. doi:10.1016/j.tins.2005.05.006
[33] A. Stepanyants, P. R. Hof and D. B. Chklovskii, “Geometry and Structural Plasticity of Synaptic Connectivity,” Neuron, Vol. 34, No. 2, 2002, pp. 275-288. doi:10.1016/S0896-6273(02)00652-9
[34] Tarec Fares and Armen Stepanyants, “Cooperative Synapse Formation in the Neocortex,” PNAS, Vol. 106, No. 38, 2002, pp. 16463-16468. www.pnas.org_cgi_doi_10.1073_pnas.0813265106.
[35] N. Kalisman, G. Silberberg and H. Markram, “The Neocortical Microcircuit as a Tabularasa,” Proceedings of National Academy of Science of the USA, Vol. 102, No. 3, 2005, pp. 880-885. doi:10.1073/pnas.0407088102
[36] D. Feldmeyer, V. Egger, J. Lubke and B. Sakmann, “Reliable Synaptic Connections between Pairs of Excitatory Layer 4 Neurones within a Single ‘Barrel’ of Developing Rat Somatosensory Cortex,” The Journal of Physiology, Vol. 521, No. 1, 1999, pp. 169-190. doi:10.1111/j.1469-7793.1999.00169.x
[37] D. Feldmeyer, J. Lubke, R. A. Silver and B. Sakmann, “Synaptic Connections between Layer 4 Spiny Neurone-Layer 2/3 Pyramidal Cell Pairs in Juvenile Rat Barrel Cortex: Physiology and Anatomy of Interlaminar Signalling within a Cortical Column,” The Journal of Physiology, Vol. 538, No. 3, 2002, pp. 803-822. doi:10.1113/jphysiol.2001.012959
[38] H. Markram, J. Lubke, M. Frotscher, A. Roth and B. Sakmann, “Physiology and Anatomy of Synaptic Connections between Thick Tufted Pyramidal Neurones in the Developing Rat Neocortex,” The Journal of Physiology, Vol. 500, No. 2, 1997, pp. 409-440.
[39] U. V. Nagerl, G. Kostinger, J. C. Anderson, K. A. Martin and T. Bonhoeffer, “Protracted Synaptogenesis after Activity-Dependant Spinogenesis in Hippocampal Neurons,” The Journal of Neuroscience, Vol. 27, No. 30, 2007, pp. 8149-8156. doi:10.1523/JNEUROSCI.0511-07.2007
[40] K. Matsumoto-Miyai, et al., “Coincident Preand Postsynaptic Activation Induces Dendritic Filopodia via Neurotrypsin-Dependant Agrin Cleavage,” Cell, Vol. 136, No. 6, 2009, pp. 1161-1171. doi:10.1016/j.cell.2009.02.034
[41] T. Branco and K. Staras, “The Probability of Neurotransmitter Release: Variability and Feedback Control at Single Synapses,” Nature Reviews of Neuroscience, Vol. 10, No. 5, 2009, pp. 373-383.
[42] I. Riebe and E. Hanse, “Development of Synaptic Connectivity onto Interneurons in Stratum Radiatum in the CA1 Region of the Rat Hippocampus,” BMC Neuroscience, Vol. 13, No. 1, 2012, p. 14. doi:10.1186/1471-2202-13-14
[43] E. De Robertis, “Submicroscopic Morphology of the Synapse,” International Review of Cytology, Vol. 8, 1959, pp. 61-96. doi:10.1016/S0074-7696(08)62728-X
[44] R. W. Guillery, “Early Electron Microscopic Observations of Synaptic Structures in the Cerebral Cortex: A View of the Contributions Made by George Gray (19241999),” Trends in Neuroscience, Vol. 23, No. 12, 2000, pp. 594-598. doi:10.1016/S0166-2236(00)01635-0
[45] J. Gerlach, “The Spinal Cord,” In: S. Stricker, Ed., Manual of Histology, Williams and Wood & Co., New York, 1872, pp. 327-366.
[46] E. Deiters and R. W. Guillery, “Otto Deiters: 1834-1863,” Experimental Neurology, Vol. 9, No. 1, 1963, pp. iii-vi.
[47] E. G. Gary and R. W. Guillery, “Synaptic Morphology in the Normal and Degenerating Nervous System,” International Review of Cytology, Vol. 19, 1996, pp. 111-182. doi:10.1016/S0074-7696(08)60566-5
[48] C. Golgi, “La Doctrine du Neurone, Theorie et Faits,” In: K. B. Hasselberg, S. O. Pettersson, K. A. H. Morner, C. D. Wirsen and M. C. G. Santesson, Eds., Les prix Nobel: 1906, Imprimerie Royale, Norstedt & Soner, Stockholm, 1908, pp. 1-31.
[49] F. Nissl, D. Neuronenlehre and I. Anhänger, “Ein Beitrag zur Lo¨sung des Problems der Beziehungen zwischen Nervenzelle,” Faser und Grau, Gustav Fisher, Jena, 1903.
[50] L. Shapiro and D. R. Coleman, “The Diversity of Cadherins and the Implications for a Synaptic Adhesive Code in the CNS,” Neuron, Vol. 23, No. 3, 1999, pp. 427-430. doi:10.1016/S0896-6273(00)80796-5
[51] S.-K. Kwon, J. Woo, S.-Y. Kim, H. Kim and E. Kim, “Trans-Synaptic Adhesions between Netrin-G Ligand-3 (NGL-3) and Receptor Tyrosine Phosphatases LAR, Protein-Tyrosine Phosphatase_ (PTP_), and PTP_ via Specific Domains Regulate Excitatory Synapse Formation,” The Journal of Biological chemistry, Vol. 285, No. 18, 2010, pp. 13966-13978.
[52] M. V. Bennett and R. S. Zukin, “Electrical Coupling and Neuronal Synchronization in the Mammalian Brain,” Neuron, Vol. 41, No. 4, 2004, pp. 495-511. doi:10.1016/S0896-6273(04)00043-1
[53] B. W. Connors and M. A. Long, “Electrical Synapses in the Mammalian Brain,” Annual Review of Neuroscience, Vol. 27, No. 1, 2004, pp. 393-418. doi:10.1146/annurev.neuro.26.041002.131128
[54] S. Hestrin and M. Galarreta, “Electrical Synapses Define Networks of Neocortical GABAergic Neurons,” Trends in Neuroscience, Vol. 28, No. 6, 2005, pp. 304-309. doi:10.1016/j.tins.2005.04.001
[55] R. Bruzzone and R. Dermietzel, “Structure and Function of Gap Junctions in the Developing Brain,” Cell and Tissue Research, Vol. 326, No. 2, 2006, pp. 239-248. doi:10.1007/s00441-006-0287-0
[56] B. Sutor and T. Hagerty, “Involvement of Gap Junctions in the Development of the Neocortex,” Biochimia et Biophys Acta, Vol. 1719, No. 1-2, 2005, pp. 59-68. doi:10.1016/j.bbamem.2005.09.005
[57] P. Washbourne, J. E. Bennet and A. K. McAllister, “Rapid Recruitment of NMDA Receptor Transport Packets to Nascent Synapses,” Nature Neuroscience, Vol. 5, No. 8, 2002, pp. 751-759.
[58] R. C. Malenka and R. A. Nicoll, “NMDA-Receptor-Dependant Synaptic Plasticity: Multiple Forms and Mechanisms,” Trends in Neuroscience, Vol. 16, No. 12, 1993, pp. 521-527. doi:10.1016/0166-2236(93)90197-T
[59] K. Fox, B. L. Schlaggar, S. Glazewski and D. D. O’Leary, “Glutamate Receptor Blockade at Cortical Synapses Disrupts Development of Thalamocortical and Columnar Organization in Somatosensory Cortex,” Proceedings of National Academy of Science of USA, Vol. 93, No. 11, 1996, pp. 5584-5589. doi:10.1073/pnas.93.11.5584
[60] L. Huang and S. L. Pallas, “NMDA Antagonists in the Superior Colliculus Prevent Developmental Plasticity but Not Visual Transmission or Map Compression,” Journal of Neurophysiology, Vol. 86, No. 3, 2001, pp. 1179-1194.
[61] D. Liao, N. A. Hessler and R. Malinow, “Activation of Postsynaptically Silent Synapses during Pairing-Induced LTP in CA1 Region of Hippocampal Slice,” Nature, Vol. 375, No. 6530, 1995, pp. 400-404. doi:10.1038/375400a0
[62] R. Malinow, Z. F. Mainen and Y. Hayashi, “LTP Mechanisms: From Silence to Four-Lane Traffic,” Current Opinion in Neurobiology, Vol. 10, No. 3, 2000, pp. 352-357. doi:10.1016/S0959-4388(00)00099-4
[63] M. Y. Xiao, H. Wigstrom and B. Gustafsson, “LongTerm Depression in the Hippocampal CA1 Region Is Associated with Equal Changes in AMPA and NMDA Receptor-Mediated Synaptic Potentials,” European Journal of Neuroscience, Vol. 6, No. 6, 1994, pp. 1055-1057. doi:10.1111/j.1460-9568.1994.tb00600.x
[64] R. C. Carroll, D. V. Lissin, M. V. Zastrow, R. A. Nicoll and R. C. Malenka, “Rapid Redistribution of Glutamate Receptors Contributes to Long-Term Depression in Hippocampal Cultures,” Nature Neuroscience, Vol. 2, No. 5, 1999, pp. 454-460. doi:10.1038/8123
[65] V. A. Alvarez, A. D. Ridenour and L. B. Sabatini, “Distinct Structural and Ionotropic Roles of NMDA Receptors in Controlling Spine and Synapse Stability,” The Journal of Neuroscience, Vol. 27, No. 28, 2007, pp. 7365-7376. doi:10.1523/JNEUROSCI.0956-07.2007
[66] J. R. Sanes and J. W. Lichtman, “Induction, Assembly, Maturation and Maintenance of a Postsynaptic Apparatus,” Nature Reviews Neuros-cience, Vol. 2, No. 11, 2001, pp. 791-805. doi:10.1038/35097557
[67] I. I. Moraru and L. M. Loew, “Intracellular Signaling: Spatial and Temporal Control,” Pysiology, Vol. 20, No. 3, 2005, pp. 169-179, doi:10.1152/physiol.00052.2004
[68] N. C. Danbolt, “Glutamate Uptake,” Progress in Neurobiology, Vol. 65, No. 1, 2001, pp. 1-105. doi:10.1016/S0301-0082(00)00067-8
[69] S. H. Oliet, R. Piet, D. A. Poulain and D. T. Theodosis, “Glial Modulation of Synaptic Transmission: Insights from the Supraoptic Nucleus of the Hypothalamus,” Glia, Vol. 47, No. 3, 2004, pp. 258-267. doi:10.1002/glia.20032
[70] D. A. Henze, L. Wittner and G. Buzsáki, “Single Granule Cells Reliably Discharge Targets in the Hippocampal CA3 Network in Vivo,” Nature Neuroscience, Vol. 5, No. 8, 2002, pp. 790-795.
[71] J. J. Lawrence, Z. M. Grinspan and C. J. McBain, “Quantal Transmission at Mossy Fibre Targets in the CA3 Region of the Rat Hippocampus,” The Journal of Physiology, Vol. 554, No. 1, 2003, pp. 175-193. doi:10.1113/jphysiol.2003.049551
[72] J. Bischofberger, D. Engel, M. Frotscher and P. Jonas, “Timing and Efficacy of Transmitter Release at Mossy Fiber Synapses in the Hippocampal Network,” Pflügers Archiv, Vol. 453, No. 2, 2006, pp. 361-372. doi:10.1007/s00424-006-0093-2
[73] H. L. Atwood and S. Karunanithi, “Diversification of Synaptic Strength: Presynaptic Elements,” Nature Reviews Neuroscience, Vol. 3, No. 7, 2002, pp. 497-516.
[74] H. W. Tao and M.-M. Poo, “Retrograde Signaling at Central Synapses,” Proceedings of National Academy of Science of USA, Vol. 98, No. 20, 2001, pp. 11009-11015. doi:10.1073/pnas.191351698
[75] W.-X. Zhang, et al., “SynDB: A Synapse Protein DataBase Based on Synapse Ontology,” Nucleic Acids Research, Vol. 35, Sup. 1, 2007, pp. D737-D741 doi:10.1093/nar/gkl876
[76] K. Nakazawa, T. J. McHugh, M. A. Wilson and S. Tonegawa, “NMDA Receptors, Place Cells and Hippocampal Spatial Memory,” Nature Reviews Neuroscience, Vol. 5, No. 5, 2004, pp. 361-372.
[77] J. K. Leutgeb, S. Leutgeb, M. B. Moser and E. I. Moser, “Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus,” Science, Vol. 315, No. 5814, 2007, pp. 961-966. doi:10.1126/science.1135801
[78] T. Nakashiba, J. Z. Young, T. J. McHugh, D. L. Buhl and S. Tonegawa, “Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning,” Science, Vol. 319, No. 5867, 2008, pp. 12601264. doi:10.1126/science.1151120
[79] B. Bingol and E. M. Schuman, “A Proteasome-Sensitive Connection between PSD-95 and GluR1 Endocytosis,” Neuropharmacology, Vol. 47, No. 5, 2004, pp. 755-763. doi:10.1016/j.neuropharm.2004.07.028
[80] J. J. Yi and M. D. Ehlers, “Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function,” Pharmacological Reviews, Vol. 59, No. 1, 2007, pp. 14-39. doi:10.1124/pr.59.1.4
[81] K. F. Haas and K. Broadie, “Roles of Ubiquitination at the Synapse,” Biochimica et Biophysica Acta, Vol. 1779, No. 8, 2008, pp. 495-506. doi:10.1016/j.bbagrm.2007.12.010
[82] P. Kaiser and E. A. Fon, “Expanding Horizons at Big Sky. Symposium on Ubiquitin and Signaling,” EMBO Reports, Vol. 8, No. 9, 2007, pp. 817-822. doi:10.1038/sj.embor.7401017
[83] G. V. Rinettil and F. E. Schweizer, “Ubiquitination Acutely Regulates Presynaptic Neurotransmitter Release in Mammalian Neurons,” The Journal of Neuroscience, Vol. 30, No. 9, 2010, pp. 3157-3166.
[84] T. Sun, X.-S. Wu, J.-H. Xu, B. D. McNeil, Z. P. Pang, W.-J. Yang, L. Bai, S. Qadri, J. D. Molkentin, D. T. Yue and L.-G. Wu, “The Role of Calcium/Calmodulin-Activated Calcineurin in Rapid and Slow Endocytosis at Central Synapses,” The Journal of Neuroscience, Vol. 30, No. 35, 2010, pp. 11838-11847. doi:10.1523/JNEUROSCI.1481-10.2010
[85] C. E. Flores, R. Cachope, S. Nannapaneni, S. Ene, A. C. Nairn and A. E. Peredal, “Variability of Distribution of Ca2+/Calmodulin-Dependant Kinase II at Mixed Synapses on the Mauthner Cell: Colocalization and Association with Connexin 35,” The Journal of Neuroscience, Vol. 30, No. 28, 2010, pp. 9488-9499.
[86] M. M. Rosenberg, F. Yang, J. L. Mohn, E. K. Storer and M. H. Jacob, “The Postsynaptic Adenomatous Polyposis Coli (APC) Multi-protein Complex Is Required for Localizing Neuroligin and Neurexin to Neuronal Nicotinic Synapses in Vivo,” The Journal of Neuroscience, Vol. 30, No. 33, 2010, pp. 11073-11085.
[87] K. C. Marsdena, A. Shemesha, K. U. Bayerb and R. C. Carrolla, “Selective Translocation of Ca2+/Calmodulin Protein Kinase IIα (CaMKIIα) to Inhibitory Synapses,” Proceedings of National Academy of Science of USA, Vol. 107, No. 47, 2010, pp. 20559-20564.
[88] S. K. Tyagarajana, H. Ghosha, G. E. Yévenesa, I. Nikonenkob, C. Ebelinga, C. Schwerdela, C. Sidlera, H. U. Zeilhofera, B. Gerritsc, D. Mullerb and J.-M. Fritschya, “Regulation of GABAergic Synapse Formation and Plasticity by GSK3β-Dependant Phosphorylation of Gephyrin,” Vol. 108, No. 1, 2011, pp. 379-384.
[89] C. R. Sunico, D. Gonzalez-Forero, G. Domínguez, J. M. García-Verdugo and B. Moreno-Lopezl, “Nitric Oxide Induces Pathological Synapse Loss by a Protein Kinase G-, Rho Kinase-Dependant Mechanism Preceded by Myosin Light Chain Phosphorylation,” The Journal of Neuroscience, Vol. 30, No. 3, 2010, pp. 973-984.
[90] J.-Y. Hu, Y. Chen and S. Schacher, “Multifunctional Role of Protein Kinase C in Regulating the Formation and Maturation of Specific Synapses,” The Journal of Neuroscience, Vol. 27, No. 43, 2007, pp. 11712-11724
[91] T. J. Siddiqui, R. Pancaroglu, Y. Kang, A. Rooyakkers and A. M. Craig, “LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development,” The Journal of Neuroscience, Vol. 30, No. 22, 2010, pp. 7495-7506
[92] E. J. Huang and L. F. Reichardt, “Trk Receptors: Roles in Neuronal Signal Transduction,” Annual Reviews of Biochemistry, Vol. 72, 2003, pp. 609-642. doi:10.1146/annurev.biochem.72.121801.161629
[93] B. W. Luikart and L. F. Parada, “Receptor Tyrosine Kinase Bmediated Excitatory Synaptogenesis,” Progress in Brain Research, Vol. 157, 2006, pp. 15-24. doi:10.1016/S0079-6123(06)57002-5
[94] Y. Lu, K. Christian and B. Lu, “BDNF: A Key Regulator for Protein Synthesis-Dependant LTP and Long-Term Memory?” Neurobiology of Learning and Memory, Vol. 89, No. 3, 2008, pp. 312-323. doi:10.1016/j.nlm.2007.08.018
[95] J. Schulte, K. J. Sepp, R. A. Jorquera, C. Wu, Yun Song, P.-Y. Hong and J. T. Littleton, “DMob4/Phocein Regulates Synapse Formation, Axonal Transport, and Microtubule Organization,” The Journal of Neuroscience, Vol. 30, No. 15, 2010, pp. 5189-5203.
[96] W. Mah, J. Ko, J. Nam, K. Han, W. S. Chung and E. Kim, “Selected SALM (Synaptic Adhesion-Like Molecule) Family Proteins Regulate Synapse Formation,” The Journal of Neuroscience, Vol. 30, No. 16, 2010, pp. 55595568.
[97] C. N. G. Giachello, F. Fiumara, C. Giacomini, A. Corradi, C. Milanese, M. Ghirardi, F. Benfenati and P. G. Montarolo, “MAPK/Erk-Dependant Phosphorylation of Synapsin Mediates Formation of Functional Synapses and Short-Term Homosynaptic Plasticity,” Journal of Cell Science, Vol. 123, 2010, pp. 881-893. doi:10.1242/jcs.056846
[98] P. T. Hallock, C.-F. Xu, T.-J. Park, T. A. Neubert, T. Curran and S. J. Burden, “Dok-7 Regulates Neuromuscular Synapse Formation by Recruiting Crk and Crk-L,” Genes Development, Vol. 24, No. 21, 2010, pp. 24512461. doi:10.1101/gad.1977710
[99] P. García-Junco-Clemente, G. Cantero, L. Gomez-Sanchez, P. Linares-Clemente, J. A. Martínez-Lopez, R. Lujan and R. Fernandez-Chacon, “Cysteine String Protein-α Prevents Activity-Dependent Degeneration in GABAergic Synapses,” The Journal of Neuroscience, Vol. 30, No. 21, 2010, pp. 7377-7391.
[100] M. Zhao, J. Raingo, Z.-J. “James” Chen and E. T. Kavalali, “Cc2d1a, a C2 Domain Containing Protein Linked to Nonsyndromic Mental Retardation, Controls Functional Maturation of Central Synapses,” Journal of Neurophysiology, Vol. 105, No. 4, 2011, pp. 1506-1515. doi:10.1152/jn.00950.2010
[101] P.-Y. Deng, Z.-Y. Xiao, A. Jha, D. Ramonet, T. Matsui, M. Leitges, H.-S. Shin, J. E. Porter, J. D. Geiger and S. Lei, “Cholecystokinin Facilitates Glutamate Release by Increasing the Number of Readily Releasable Vesicles and Releasing Probability,” The Journal of Neuroscience, Vol. 30, No. 15, 2010, pp. 5136-5148.
[102] C. G. Evans, B. C. Ludwar, T. Kang and E. C. Cropper, “Effect of Presynaptic Membrane Potential on Electrical vs. Chemical Synaptic Transmission,” Journal of Neurophysiology, Vol. 106, No. 2, 2011, pp. 680-689.
[103] K. L. Todd, W. B. Kristan Jr. and A. Kathleen “French Gap Junction Expression Is Required for Normal Chemical Synapse Formation,” The Journal of Neuroscience, Vol. 30, No. 45, 2010, pp. 15277-15285.
[104] C. G. Evans, B. C. Ludwar, T. Kang and E. C. Cropper, “Effect of Presynaptic Membrane Potential on Electrical vs. Chemical Synaptic Transmission,” Journal of Neurophysiology, Vol. 106, No. 2, 2011, pp. 680-689. doi:10.1152/jn.00340.2011
[105] D. M. Kullmann and K. P. Lamsa, “Long-Term Synaptic Plasticity in Hippocampal Inter-neurons,” Nature Reviews Neuroscience, Vol. 8, No. 9, 2007, pp. 687-699.
[106] R. Scott, T. Lalic, D. M. Kullmann, M. Capogna and D. A. Rusakov, “Target-Cell Specificity of Kainate Autoreceptor and Ca2+-store-Dependent Short-Term Plasticity at Hippocampal Mossy Fiber Synapses,” The Journal of Neuroscience, Vol. 28, No. 49, 2008, pp. 13139-13149. doi:10.1523/JNEUROSCI.2932-08.2008
[107] K. A. Pelkey, L. Topolnik, J. C. Lacaille and C. J. McBain, “Compartmentalized Ca2+ Channel Regulation at Divergent Mossy-Fiber Release Sites Underlies Target Cell-Dependent Plasticity,” Neuron, Vol. 52, No. 3, 2006. pp. 497-510. doi:10.1016/j.neuron.2006.08.032
[108] U. Pannascha, L. Vargová, J. Reingruberd, P. Ezana, D.
[109] Holcmand, C. Giaumea, E. Syková and N. Rouacha, “Astroglial Networks Scale Synaptic Activity and Plasticity,” Proceedings of National Academy of Science of USA, Vol. 108, No. 20, 2011, pp. 8467-8472.
[110] F. Canal, O. Palygin, Y. Pankratov, S. A. L. Correa and J. Muller, “Compartmentalization of the MAPK Scaffold Protein KSR1 Modulates Synaptic Plasticity in Hippocampal Neurons,” The FASEB Journal Research Communication, Vol. 25, No. 7, 2011, pp. 2362-2372. doi:10.1096/fj.10-173153
[111] R. Cachope, “Functional Diversity on Synaptic Plasticity Mediated by Endocannabinoids,” Philosophical Transactions of the Royal Society B, Vol. 367, No. 1607, 2012, pp. 3242-3253. doi:10.1098/rstb.2011.0386
[112] D. S. Shin, W. Yu, A. Fawcett and P. L. Carlen, “Characterizing the Persistent CA3 Interneuronal Spiking Activity in Elevated Extracellular Potassium in the Young Rat Hippocampus,” Brain Research, Vol. 1331, 2010, pp. 3950. doi:10.1016/j.brainres.2010.03.023
[113] D. S. Shin, W. Yu, A. Sutton, M. Calos and P. L. Carlen, “Elevated Potassium Elicits Recurrent Surges of Large GABAA-Receptor Mediated Post-Synaptic Currents in Hippocampal CA3 Pyramidal Neurons,” Journal of Neurophysiology, Vol. 105, No. 3, 2011, pp. 1185-1198. doi:10.1152/jn.00770.2010
[114] S. Olah, M. Fule, G. Komlosi, et al., “Regulation of Cortical Microcircuits by Unitary GA-BA-Mediated Volume Transmission,” Nature, Vol. 461, No. 7268, 2009, pp. 1278-1281. doi:10.1038/nature08503
[115] T. Kimata, et al., “Synaptic Polarity Depends on Phosphatidylinositol Signaling Regulated by MyoInositol Monophosphatase in Caenorhabditis Elegans,” Genetics, Vol. 191, No. 2, 2012, pp. 509-521.
[116] L. A. Jarzylo and H.-Y. Man, “Parasynaptic NMDA Receptor Signaling Couples Neuronal Glutamate Transporter Function to AMPA Receptor Synaptic Distribution and Stability,” The Journal of Neuroscience, Vol. 32, No. 7, 2012, pp. 2552-2563. doi:10.1523/JNEUROSCI.3237-11.2012
[117] R. W. Guillery, “Histology of the Nervous System (Book Review),” Trends in Neuroscience, Vol. 19, No. 4, 1996, pp. 156-157. doi:10.1016/S0166-2236(96)80029-4

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.