The Effect of the MeV Si-Ion Irradiation on the Photoluminescence of Silicon Nanocrystals

Abstract

Silicon nanocrystals embedded in silicon nitride films were irradiated with Si-ions at 8 MeV in order to modify their optical response. The samples were characterized by means of Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis, High-Resolution Transmission Electronic Microscopy and Photoluminescence analysis. It was found a blue-shift in the photoluminescence emission from the as-grown films after they were irradiated with high energetic silicon ions. According to the quantum confinement theory, this fact is related to a decrease in size of the silicon nanocrystals, which means that a higher silicon fluence irradiation is related with a diminishing in silicon nanocrystal size.

Share and Cite:

A. López-Suárez, "The Effect of the MeV Si-Ion Irradiation on the Photoluminescence of Silicon Nanocrystals," World Journal of Condensed Matter Physics, Vol. 3 No. 2, 2013, pp. 119-124. doi: 10.4236/wjcmp.2013.32019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. W. Kim, C. H. Cho, B. H. Kim and S. J. Park, “Quantum Confinement Effect in Crystalline Silicon Quantum Dots in Silicon Nitride Grown Using SiH4 and NH3,” Applied Physics Letters, Vol. 88, No. 12, 2006, pp. 123102-123104. doi:10.1063/1.2187434
[2] N. M. Park, C. J. Choi, T. Y. Seong and S. J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Physical Review Letters, Vol. 86, No. 7, 2001, pp. 1355-1357. doi:10.1103/PhysRevLett.86.1355
[3] Y. Q. Wang, Y. G. Wang and L. Cao, “High-Efficiency Visible Photoluminescence from Amorphous Silicon Nanoparticles Embedded in Silicon Nitride,” Physical Review Letters, Vol. 83, No. 17, 2003, pp. 3474-3477.
[4] L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine and S. Giorgio, “Photoluminescence of Silicon Nanoclusters with Reduced Size Dispersion Produced by Laser Ablation,” Journal of Applied Physics, Vol. 87, No. 8, 2000, pp. 3829-3837. doi:10.1063/1.372421
[5] H. Mertens, J. S. Biteen, H. A. Atwater and A. Polman, “Polarization Selective Plasmon Enhanced Silicon Quantum Dot Luminescence,” Nano Letters, Vol. 6, No. 11, 2006, pp. 2622-2625. doi:10.1021/nl061494m
[6] S. Rooda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen and B. J. Kooi, “Aligned Gold Nanorods in Silica Made by Ion Irradiation of Core Shell Colloidal Particles,” Advanced Materials, Vol. 16, No. 3, 2004, pp. 235-237. doi:10.1002/adma.200305742
[7] M. Mayer, “SIMNRA User’s Guide Version 6.04,” MaxPlanck Institute für Plasmaphysik, Garching, 2008.
[8] B. H. Kim, C. H. Cho, T. W. Kim, N. M. Park, G. Y. Sung and S. J. Park, “Photoluminescence of Silicon Quantum Dots in Silicon Nitride Grown by NH3 and SiH4,” Applied Physics Letters, Vol. 86, No. 9, 2005, pp. 091908-091910. doi:10.1063/1.1872211
[9] H. Shirai, Y. Fujimura and S. jung, “Formation of Nanocrystalline Silicon Dots from Chlorinated Materials by RF Plasma-Enhanced Chemical Vapor Deposition,” Thin Solid Films, Vol. 407, No. 1-2, 2002, pp. 12-17. doi:10.1016/S0040-6090(02)00005-6
[10] S. Kasouit, J. Damon-Lacoste, R. Vanderhaghen and P. Roca Cabarrocas, “Contribution of Plasma Generated Nanocrystals to the Growth of Microcrystalline Silicon Thin Films,” Journal of Non-Crystal Solids, Vol. 86, 2004, pp. 338-340.
[11] H. Liu, S. Jung, Y. Fukimura, C. Fukai, H. Shirai and Y. Toyoshima, “Low Temperature Plasma-Enhanced Chemical Vapor Deposition of Crystal Silicon Film from Dichlorosilane,” Japanese Journal of Applied Physics, Vol. 40, 2001, pp. 44-48. doi:10.1143/JJAP.40.44
[12] J. W. Tringe, T. E. Felter, C. E. Talley, J. D. Morse, C. G. Stevens, J. M. Castelaz and C. Wetzel, “Radiation Damage Mechanisms for Luminescence in Eu-doped GaN,” Journal of Applied Phyisics, Vol. 101, No. 5, 2007, pp. 054902-0540904. doi:10.1063/1.2696527
[13] S. Klaumünzer, “Ion Hammering of Silica Colloids,” Nuclear Instruments and Methods in Physics Research B, Vol. 215, No. 3-4, 2003, pp. 345-352. doi:10.1016/j.nimb.2003.08.031
[14] B. Schmidt, A. Mücklich, L. Rontzsch and K.-H. Heining, “How Do High Energy Heavy Ions Shape Ge Nanoparticles Embedded in SiO2?” Nuclear Instruments and Methods in Physics Research B, Vol. 257, No. 1-2, 2007, pp. 30-32. doi:10.1016/j.nimb.2006.12.152

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.