[1]
|
R. G. Ghanem and P. D. Spanos, “Stochastic Finite Ele ments: A Spectral Approach,” Springer-Verlag, New York, 2012.
|
[2]
|
D. Xiu and G. E. Karniadakis, “Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 137-167. doi:10.1016/S0021-9991(03)00092-5
|
[3]
|
M. Loève, “Probability Theory II (Graduate Text in Mathematics),” Springer-Verlag, Berlin, 1978.
|
[4]
|
S. Q. Wu and S. S. Law, “Evaluating the Response Statistics of an Uncertain Bridge-vehicle System,” Mechanical Systems and Signal Processing, Vol. 27, 2012, pp. 576-589. doi:10.1016/j.ymssp.2011.07.019
|
[5]
|
V. Papadopoulos and O. Kokkinos, “Variability Response Functions for Stochastic Systems,” Probabilistic Engineering Mechanics, Vol. 28, 2012, pp. 176-184.
doi:10.1016/j.probengmech.2011.08.002
|
[6]
|
G. Y. Sheu, “Prediction of Probabilistic Settlements via Spectral Stochastic Meshless Local Petrov-Galerkin Method,” Computers and Geotechnics, Vol. 38, No. 4, 2011, pp. 407-415. doi:10.1016/j.compgeo.2011.02.001
|
[7]
|
M. F. Ngah and A. Young “Application of the Spectral Stochastic Finite Element Method for Performance Pre diction of Composite Structures,” Composite Structures, Vol. 78, No. 3, 2007, pp. 447-456.
doi:10.1016/j.compstruct.2005.11.009
|
[8]
|
J. N. Reddy, “An Introduction to the Finite Element Method,” 2nd Edition, McGraw-Hill Company, New York, 1993.
|