Equivocal Differential Effect of NDRG1 in Human Ovarian Cancer Cells

DOI: 10.4236/jct.2013.45A002   PDF   HTML     3,817 Downloads   5,701 Views  


Inactivation of tumor suppressor genes is a key factor in cancer regulation. N-myc downstream regulated gene 1 (NDRG1) is a tumor suppressor gene well known to be involved in carcinogenesis of numerous cancer types. The present study was designed to investigate the role of NDRG1 in human ovarian cancer, using SKOV-3 and SW626 (moderately and well differentiated cancer cells, respectively). Our results revealed that over-expressed NDRG1 significantly up-regulated the differentiation marker p21, in the ovarian cancer cell lines. This regulation led to decrease in cell viability and DNA synthesis rates in SW626 cells (83% and 89.5%, respectively). However, no effect on viability or on DNA synthesis was observed in SKOV-3 NDRG1-transfected cells. These findings prove that NDRG1 is indubitably functional in human ovarian cancer cells, as it up-regulated p21 expression. Nevertheless, this regulation showed differential effect on cell viability and DNA formation thus promoting the perception that downstream regulation of p21 could be inefficient in some cancer cells, a concept that needs to be further explored in order to understand its disability to play as regulator of cell cycle progression.

Share and Cite:

T. Napso, E. Zino, N. Azzam, A. Lerner and F. Fares, "Equivocal Differential Effect of NDRG1 in Human Ovarian Cancer Cells," Journal of Cancer Therapy, Vol. 4 No. 5A, 2013, pp. 8-14. doi: 10.4236/jct.2013.45A002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. van Belzen, W. N. Dinjens, M. P. Diesveld, N. A. Groen, A. C. van der Made, Y. Nozawa, et al., “A Novel Gene Which Is Up-Regulated during Colon Epithelial Cell Differentiation and Down-Regulated in Colorectal Neoplasms,” Laboratory Investigation, Vol. 77, No. 1, 1997, pp. 85-92.
[2] K. Kokame, H. Kato and T. Miyata, “Homocysteine-Respondent Genes in Vascular Endothelial Cells Identified by Differential Display Analysis. GRP78/BiP and Novel Genes,” The Journal of Biological Chemistry, Vol. 271, No. 47, 1996, pp. 29659-29665. doi:10.1074/jbc.271.47.29659
[3] D. Zhou, K. Salnikow and M. Costa, “Cap43, a Novel Gene Specifically Induced by Ni2+ Compounds,” Cancer Research, Vol. 58, No. 10, 1998, pp. 2182-2189.
[4] S. K. Kurdistani, P. Arizti, C. L. Reimer, M. M. Sugrue, S. A. Aaronson and S. W. Lee, “Inhibition of Tumor Cell Growth by RTP/Rit42 and Its Responsiveness to p53 and DNA Damage,” Cancer Research, Vol. 58, No. 19, 1998, pp. 4439-4444.
[5] H. Park, M. A. Adams, P. Lachat, F. Bosman, S. C. Pang and C. H. Graham, “Hypoxia Induces the Expression of a 43-kDa Protein (PROXY-1) in Normal and Malignant Cells,” Biochemical and Biophysical Research Communications, Vol. 276, No. 1, 2000, pp. 321-328. doi:10.1006/bb rc.2000.3475
[6] D. Piquemal, D. Joulia, P. Balaguer, A. Basset, J. Marti and T. Commes, “Differential Expression of the RTP/ Drg1/Ndr1 Gene Product in Proliferating and Growth Arrested Cells,” Biochimica et Biophysica Acta, Vol. 1450, No. 3, 1999, pp. 364-373. doi:10.1016/S0167-4889(99)00056-7
[7] Y. Taketomi, T. Sugiki, T. Saito, S. Ishii, M. Hisada, T. Suzuki-Nishimura, et al., “Identification of NDRG1 as an Early Inducible Gene during in Vitro Maturation of Cultured Mast Cells,” Biochemical and Biophysical Research Communications, Vol. 306, No. 2, 2003, pp. 339-346. doi:10.1016/S0006-291X(03)00942-2
[8] K. Salnikow, M. V. Blagosklonny, H. Ryan, R. Johnson and M. Costa, “Carcinogenic Nickel Induces Genes Involved with Hypoxic Stress,” Cancer Research, Vol. 60, No. 1, 2000, pp. 38-41.
[9] S. Bandyopadhyay, S. K. Pai, S. C. Gross, S. Hirota, S. Hosobe, K. Miura, et al., “The Drg-1 Gene Suppresses Tumor Metastasis in Prostate Cancer,” Cancer Research, Vol. 63, No. 8, 2003, pp. 1731-1736.
[10] S. Bandyopadhyay, S. K. Pai, S. Hirota, S. Hosobe, Y. Takano, K. Saito, et al., “Role of the Putative Tumor Metastasis Suppressor Gene Drg-1 in Breast Cancer Progression,” Oncogene, Vol. 23, No. 33, 2004 , pp. 5675-5681. doi:10.1038/sj.onc.1207734
[11] L. C. Tu, X. Yan, L. Hood and B. Lin, “Proteomics Analysis of the Interactome of N-MYC Downstream Regulated Gene 1 and Its Interactions with the Androgen Response Program in Prostate Cancer Cells,” Molecular & Cellular Proteomics, Vol. 6, No. 4, 2007, pp. 575-588. doi:10.1074/mcp.M600249-MCP200
[12] R. J. Guan, H. L. Ford, Y. Fu, Y. Li, L. M. Shaw and A. B. Pardee, “Drg-1 as a Differentiation-Related, Putative Metastatic Suppressor Gene in Human Colon Cancer,” Cancer Research, Vol. 60, No. 3, 2000, pp. 749-755.
[13] S. Bandyopadhyay, S. K. Pai, S. Hirota, S. Hosobe, T. Tsukada, K. Miura, et al., “PTEN Up-Regulates the Tumor Metastasis Suppressor Gene Drg-1 in Prostate and Breast Cancer,” Cancer Research, Vol. 64, No. 21, 2004, pp. 7655-7660. doi:10.1158/0008-5472.CAN-04-1623
[14] M. S. Chua, H. Sun, S. T. Cheung, V. Mason, J. Higgins, D. T. Ross, et al., “Overexpression of NDRG1 is an Indicator of Poor Prognosis in Hepatocellular Carcinoma,” Modern Pathology, Vol. 20, No. 1, 2007, pp. 76-83. doi:10.1038/modpathol.3800711
[15] K. Masuda, M. Ono, M. Okamoto, W. Morikawa, M. Otsubo, T. Migita, et al., “Downregulation of Cap43 Gene by von Hippel-Lindau Tumor Suppressor Protein in Human Renal Cancer Cells,” International Journal of Cancer, Vol. 105, No. 6, 2003, pp. 803-810.
[16] A. Nishie, K. Masuda, M. Otsubo, T. Migita, M. Tsuneyoshi, K. Kohno, et al., “High Expression of the Cap43 Gene in Infiltrating Macrophages of Human Renal Cell Carcinomas,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, Vol. 7, No. 7, 2001, pp. 2145-2151.
[17] J. Chen, S. Li, Z. Yang, G. Lu and H. Hu, “Correlation between NDRG1 and PTEN Expression in Endometrial Carcinoma,” Cancer Science, Vol. 99, No. 4, 2008, pp. 706-710. doi:10.1111/j.1349-7006.2008.00749.x
[18] P. Lachat, P. Shaw, S. Gebhard, N. van Belzen, P. Chaubert and F. T. Bosman, “Expression of NDRG1, a Differentiation-Related Gene, in Human Tissues,” Histochemistry and Cell Biology, Vol. 118, No. 5, 2002, pp. 399-408. doi:10.1007/s00418-002-0460-9
[19] N. Barboule, V. Baldin, S. Jozan, S. Vidal and A. Valette, “Increased Level of p21 in Human Ovarian Tumors Is Associated with Increased Expression of CDK2, Cyclin A and PCNA,” International Journal of Cancer, Vol. 76, No. 6, 1998, pp. 891-896.
[20] F. Terauchi, A. Okamoto, T. Nagashima, Y. Kobayashi, T. Moritake, Y. Yamamoto, et al., “Clinical Significance of p21(WAF1/CIP1) and p53 Expression in Serous Cystadenocarcinoma of the Ovary,” Oncology Reports, Vol. 14, No. 2, 2005, pp. 363-368.
[21] L. G. Buchynska, I. P. Nesina, N. P. Yurchenko, O. O. Bilyk, V. N. Grinkevych and V. S. Svintitsky, “Expression of p53, p21WAF1/CIP1, p16INK4A and Ki-67 Proteins in Serous Ovarian Tumors,” Experimental Oncology, Vol. 29, No. 1, 2007, pp. 49-53.
[22] A. Marchetti, F. Buttitta, S. Pellegrini, G. Bertacca, A. Lori and G. Bevilacqua, “Absence of Somatic Mutations in the Coding Region of the waf1/cip1 Gene in Human Breast, Lung and Ovarian Carcinomas—A Polymorphism at Codon-31,” International Journal of Oncology, Vol. 6, No. 1, 1995, pp. 187-189.
[23] M. Esteller, “Epigenetics in Cancer,” The New England Journal of Medicine, Vol. 358, No. 11, 2008, pp. 1148-1159. doi:10.1056/NEJMra072067
[24] I. Ibanez de Caceres, C. Battagli, M. Esteller, J. G. Herman, E. Dulaimi, M. I. Edelson, et al., “Tumor Cell-Specific BRCA1 and RASSF1A Hypermethylation in Serum, Plasma, and Peritoneal Fluid from Ovarian Cancer Patients,” Cancer Research, Vol. 64, No. 18, 2004, pp. 6476-6481. doi:10.1158/0008-5472.CAN-04-1529
[25] D. H. Shen, K. Y. Chan, U. S. Khoo, H. Y. Ngan, W. C. Xue, P. M. Chiu, et al., “Epigenetic and Genetic Alterations of p33ING1b in Ovarian Cancer,” Carcinogenesis, Vol. 26, No. 4, 2005, pp. 855-863. doi:10.1093/carcin/bgi011
[26] W. Feng, R. T. Marquez, Z. Lu, J. Liu, K. H. Lu, J. P. Issa, et al., “Imprinted Tumor Suppressor Genes ARHI and PEG3 Are the Most Frequently Down-Regulated in Human Ovarian Cancers by Loss of Heterozygosity and Promoter Methylation,” Cancer, Vol. 112, No. 7, 2008, pp. 1489-1502. doi:10.1002/cncr.23323
[27] K. Selvendiran, L. Tong, S. Vishwanath, A. Bratasz, N. J. Trigg, V. K. Kutala, et al., “EF24 Induces G2/M Arrest and Apoptosis in Cisplatin-Resistant Human Ovarian Cancer Cells by Increasing PTEN Expression,” The Journal of Biological Chemistry, Vol. 282, No. 39, 2007, pp. 28609-28618. doi:10.1074/jbc.M703796200
[28] H. Wu, S. Wang, D. Weng, H. Xing, X. Song, T. Zhu, et al., “Reversal of the Malignant Phenotype of Ovarian Cancer A2780 Cells through Transfection with WildType PTEN Gene,” Cancer Letters, Vol. 271, No. 2, 2008, pp. 205-214. doi:10.1016/j.canlet.2008.06.018
[29] Y. Takei, Y. Saga, H. Mizukami, T. Takayama, M. Ohwada, K. Ozawa, et al., “Over Expression of PTEN in Ovarian Cancer Cells Suppresses I.P. Dissemination and Extends Survival in Mice,” Molecular Cancer Therapeutics, Vol. 7, No. 3, 2008, pp. 704-711. doi:10.1158/1535-7163.MCT-06-0724
[30] Z. Ju, A. R. Choudhury and K. L. Rudolph, “A Dual Role of p21 in Stem Cell Aging,” Annals of the New York Academy of Sciences, Vol. 1100, 2007, pp. 333-344. doi:10.1196/annals.1395.036
[31] A. Viale, F. De Franco, A. Orleth, V. Cambiaghi, V. Giuliani, D. Bossi, et al., “Cell-Cycle Restriction Limits DNA Damage and Maintains Self-Renewal of Leukaemia Stem Cells,” Nature, Vol. 457, No. 7225, 2009, pp. 51-56. doi:10.1038/nature07618

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.