Share This Article:

Land Use Changes Do Not Rapidly Change the Trophic State of a Deep Lake. Amvrakia Lake, Greece

Abstract Full-Text HTML Download Download as PDF (Size:1591KB) PP. 426-434
DOI: 10.4236/jep.2013.45051    2,610 Downloads   4,327 Views   Citations

ABSTRACT

The study of physicochemical and biological parameters can assess the trend of a lake’s trophic state. A trophic state index (TSI) was used to assess eutrophication of LakeAmvrakia. Total phosphorus and chlorophyll concentrations that recorded were generally at the same level with those recorded in previous years, a fact which indicates that lake’s trophic state did not change. But in the past ten years, agricultural uses have been modified by almost 25% of the catchment area, because of the major reduction of tobacco cultivation. One year of monthly monitoring, in nine sampling stations can report this result. Even if the catchment is small and the agricultural areas are the 47% of the basin, the water quality of the lake did not change. The trophic state is stable probably because the lake is deep monomictic, and seasonally anoxic. For this reason internal phosphorus contribution is very important in the deep hypolimnion.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Α. Thomatou, M. Triantafyllidou, E. Chalkia, G. Kehayias, I. Konstantinou and I. Zacharias, "Land Use Changes Do Not Rapidly Change the Trophic State of a Deep Lake. Amvrakia Lake, Greece," Journal of Environmental Protection, Vol. 4 No. 5, 2013, pp. 426-434. doi: 10.4236/jep.2013.45051.

References

[1] I. Kagalou, E. Papastergiadou and I. Leonardos, “Long Term Changes in the Eutrophication Process in a Shallow Mediterranean Lake Ecosystem of W. Greece: Response after the Reduction of External Load,” Journal of Environmental Management, Vol. 87, No. 3, 2008, pp. 497-506. doi:10.1016/j.jenvman.2007.01.039
[2] C. F. Iscen, O. Emiroglu, S. Ilhan, N. Arslan, V. Yilmaz and S. Ahiska, “Application of Multivariate Statistical Techniques in the Assessment of Surface Water Quality in Uluabat Lake, Turkey,” Environmental Monitoring and Assessment, Vol. 144, No. 1-3, 2008, pp. 269-276. doi:10.1007/s10661-007-9989-3
[3] O. A. Yunev, J. Carstensen, S. Moncheva, A. Khaliulin, G. Ertebjerg and S. Nixon, “Nutrient and Phytoplankton Trends on the Western Black Sea Shelf in Response to Cultural Eutrophication and Climate Changes,” Estuarine, Coastal and Shelf Science, Vol. 74, No. 1-2, 2007, pp. 63-76. doi:10.1016/j.ecss.2007.03.030
[4] O. Anneville and J. P. Pelletier, “Recovery of Lake Geneva from Eutrophication: Quantitative Response of Phytoplankton,” Archiv für Hydrobiologie, Vol. 148, No. 4, 2000, pp. 607-624.
[5] S. Rekolainen, S. Mitikka, J. Vuorenmaa and M. Johansson, “Rapid Decline of Dissolved Nitrogen in Finnish Lakes,” Journal of Hydrology, Vol. 304, No. 1-4, 2005, pp. 94-102. doi:10.1016/j.jhydrol.2004.07.024
[6] R. Portielje and D. T. Van der Molen, “Relationships between Eutrophication Variables: From Nutrient Loading to Transparency,” Hydrobiologia, Vol. 408-409, 1999, pp. 375-387. doi:10.1023/A:1017090931476
[7] E. B. Welch and J. M. Jacoby, “On Determining the Principle Source of Phosphorus Causing Summer Algal Blooms in western Washington lakes,” Lake and Reservoir Management, Vol. 17, No. 1, 2001, pp. 55-65. doi:10.1080/07438140109353973
[8] E. Komatsu, T. Fukushima and H. Shiraishia, “Modeling of P-Dynamics and Algal Growth in a Stratified Reservoir—Mechanisms of P-Cycle in Water and Interaction between Overlying Water and Sediment,” Ecological Modelling, Vol. 197, No. 3-4, 2006, pp. 331-349. doi:10.1016/j.ecolmodel.2006.03.023
[9] J. M. Burkholder, “Eutrophication and Oligotrophication,” Encyclopedia of Biodiversity, Vol. 2, 2001, pp. 649-670. doi:10.1016/B0-12-226865-2/00113-9
[10] R. J. Diaz and R. Rosenberg, “Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioral Responses of Benthic Macrofauna,” Oceanography and Marine Biology, An Annual Review, Vol. 33, 1995, pp. 245-303.
[11] N. N. Rabalais, R. E. Turner and W. J. Wiseman, “Hypoxia in the Gulf of Mexico,” Journal of Environmental Quality, Vol. 30, No. 2, 2001, pp. 320-329. doi:10.2134/jeq2001.302320x
[12] G. D. Gikas, V. A. Tsihrintzis, C. S. Akratos and G. Haralambidis, “Water Quality Trends in Polyphytos Reservoir, Aliakmon River, Greece,” Environmental Monitoring and Assessment, Vol. 149, No. 1, 2009, pp. 163-181. doi:10.1007/s10661-008-0191-z
[13] R. E. Carlson, “A Trophic State Index for Lakes,” Limnology and Oceanography, Vol. 22, No. 2, 1977, pp. 361-369. doi:10.4319/lo.1977.22.2.0361
[14] D. B. Danielidis, M. Spartinou and A. Economou-Amilli, “Limnological Survey of Lake Amvrakia, Western Greece,” Hydrobiologia, Vol. 318, No. 3, 1996, pp. 207-218. doi:10.1007/BF00016682
[15] J. Overbeck, K. Anagnostidis and A. Economou-Amilli, “A Limnological Survey of Three Greek Lakes: Trichonis, Lyssimachia and Amvrakia,” Archiv für Hydrobiologie, Vol. 95, No. 1, 1982, pp. 365-394.
[16] S. Verginis and S. Leontaris, “Contributions to the Morphology and Development of the Semipolje Lake Amvrakia (Limni Amvrakia), Western Greece,” Internationale Revue der gesamten Hydrobiologie und Hydrographie, Vol. 63, No. 6, 1978, pp. 831-839. doi:10.1002/iroh.19780630615
[17] T. Koussouris and G. Photis, “Some Hydrobiological Characteristics in Amvrakia Lake, Western Greece,” Acta Hydrobiologica, Vol. 22, No. 3, 1980, pp. 337-344.
[18] I. Zacharias, I. Bertachas, N. Skoulikidis and T. Koussouris, “Greek Lakes: Limnological Overview,” Lakes & Reservoirs: Research and Management, Vol. 7, No. 1, 2002, pp. 55-62. doi:10.1046/j.1440-1770.2002.00171.x
[19] T. Koussouris, “The Water in Nature, in Development in Environmental Protection,” In: T. Koussouris, Monographs on Marine Sciences, NCMR, 1998, p. 188.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.