Share This Article:

Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up

DOI: 10.4236/ns.2013.54A002    6,236 Downloads   8,736 Views   Citations

ABSTRACT

Seven years after the discovery of the chemoautotrophic sulfidic groundwater site of the Ayyalon cave, its macrofauna can be fully reviewed. It consists of six endemic stygobiont and troglo-biont crustaceans and other arthropods and two species still with unclear status. The taxonomic list is followed by brief discussions on the systematics of the species as well as by a few comments concerning the eventual broader zoogeographical and speleological implications of the Ayyalon faunistic findings, as they appeared in literature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Por, F. , Dimentman, C. , Frumkin, A. and Naaman, I. (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up. Natural Science, 5, 7-13. doi: 10.4236/ns.2013.54A002.

References

[1] Por, F.D. (2007) Ophel: A groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel. Hydrobiologia, 592, 1-10. doi:10.1007/s10750-007-0795-2
[2] Frumkin, A. and Gvirtzman. H. (2006) Cross-formational rising groundwater at an artesian karstic basin: The Aya-lon Saline Anomaly, Israel. Journal of Hydrology, 318, 316-333. doi:10.1016/j.jhydrol.2005.06.026
[3] Naaman, I. (2011) The karst system and the ecology of Ayalon Cave, Israel. M.S. Thesis, Hebrew University of Jerusalem, Jerusalem.
[4] Defaye, D. and Por, F.D. (2010) Metacyclops (Cope-poda, Cyclopidae) from Ayyalon cave, Israel. Crustaceana, 83, 399-423. doi:10.1163/001121610X12627655658320
[5] Dimentman, Ch. and Por, F.D. (1991) The origin of the subterranean fauna of the Jordan-Dead Sea Rift Valley: New data. Stygologia, 6, 155-163.
[6] Defaye, D. and Dussart, B.H. (1995) The cyclopid fauna (Crustacea, Copepoda) of inland waters of Israel. 1. First data from semi-arid and arid regions. Hydrobiologia, 310, 1-10. doi:10.1007/BF00008178
[7] Wagner, H.P. (2012) Tethysbaena ophelicola n.sp. (Ther-mosbaenacea), a new prime consumer of the Ophel biota, Ayyalon Cave, Israel. Crustaceana, 85, 1571-1587. doi:10.1163/156854012X651646
[8] Wagner, H.P. (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). Zoologische Verhandelingen, 291, 1-338.
[9] Tsurnamal, M. (2008) A new species of the stygobiotic blind prawn Typhlocaris Calman 1909 (Decapoda, Pala-emonidae, Typhlocaridinae) from Israel. Crustaceana, 81, 487-501.
[10] Levy, G. (2007) The first troglobite scorpion from Israel and a new chaetoid family (Arachnida: Scorpiones). Zoology in the Middle East, 40, 91-96. doi:10.1080/09397140.2007.10638209
[11] Fet, V., Soleglad, M.E. and Zonstein, S.L. (2011) The genus Akrav Levy, 2007 (Scorpiones: Akravidae ) revisited. Euscorpius-Occasional Publications in Scorpiology, 134, 49 pages.
[12] ?ur?i?, B.P.M. (2008) Ayyalonia dimentmani n. g., n. sp. (Ayyaloniini, n. trib., Chthoniidae, Pseudoscorpiones) from a cave in Israel. Archives of Biological Sciences Belgrade, 60, 331-339
[13] Mendes, L.E., Molero-Baltanás, R., Bach de Roca, C. and Gaju-Ricard, M. (2011) New data and new species of Microcoryphia and Zygentoma (Insecta) from Israel. Annales Societée Entomologique France, 47, 384-393.
[14] Engel, A.S. (2007) Observations on the biodiversity of Sulfidic Karst Habitats. Journal of Cave and Karst Studies, 69,187-206.
[15] Flot, J.-F., W?rheide, G. and Dattagupta, Sh. (2010) Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. Evolutionary Biology, 10, 14 pages.
[16] Karaman, G.S., Borowsky, B. and Dattagupta, S. (2010) Two new species of the genus Niphargus Schi?dte (Amphipoda fam. Niphargidae) from the Frasassi cave system. Zootaxa, 2439, 35-52.
[17] Por, F.D. (2011) Groundwater life: Some new biospeleological views resulting from the ophel paradigm. Travaux de l’Institut Spéologique “émile Racovitza”, 61-76.
[18] Tsurnamal, M. (1978) The biology and ecology of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana, 34, 195-213. doi:10.1163/156854078X00736
[19] Tsurnamal, M. (1978) Temperature preference of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana, 34, 225-234. doi:10.1163/156854078X00781
[20] Hüppop, K. (2001) How do cave animals cope with food scarcity in caves? In: Wilkens, H., Culver, D.C. and Humphreys, W.F., Eds., Subterranean Ecosystems, Elsevier Press, Amsterdam, 417-432.
[21] Por, F.D. (2008) Deuterobiosphere the Chemosynthetic Second Biosphere of the Globe. A First Review. Integrative Zoology, 3, 101-114. doi:10.1111/j.1749-4877.2008.00083.x
[22] Dattagupta, S, Schaperdoth, I., Montanari, A., Mariani, S., Kita, N., Valley, J.W. and Macalady, J.L. (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. The ISME Journal, 3, 935-943. doi:10.1038/ismej.2009.34
[23] Hüppop, K. (2005) Adaptation to low food. In: Culver, D.C. and White, W.B., Eds., Encyclopedia of Caves, Elsevier Academic Press, Amsterdam, 4-10.
[24] Bishop, R.E., Kakuk, B. and Torres, J.J. (2004) Life in the hypoxic and anoxic zones: Metabolism and proximate composition of Caribbean troglobitic crustaceans, with observations on the water chemistry of anchialine caves. Journal of Crustacean Biology, 24, 379-393. doi:10.1651/C-2459
[25] Por, F.D. (2012) Ophel, the newly discovered hypoxic chemolithoautotrophic groundwater biome: A window to ancient animal life. In: Altenbach, A.V., Bernhard, J. and Seckbach, J., Eds., Anoxia: Evidence for Eukaryotic Survival and Paleontological Strategies, Springer Verlag, 465-478.
[26] Danovaro, R., Dell’Anno, A., Pusceddu, A., Gambi, C., Heiner, I. and Kristensen, R.M. (2010) The first metazoan living in permanently anoxic conditions. BMC Biology, 8, 30. doi:10.1186/1741-7007-8-30
[27] Oren, A. (2012) Diversity of anaerobic prokaryotes and eukaryotes: breaking long-established dogmas. In: Altenbach, A.V., Bernhard, J. and Seckbach, J. Eds., Anoxia: Evidence for Eukaryotic Survival and Paleontological Strategies, Springer Verlag, 41-47.
[28] Por. F.D. (1986) Crustacean biogeography of the Late Middle Miocene Middle Eastern Landbridge. In: Gore, R.H. and Heck, K.L. Eds., Crustacean Biogeography, Boston, 69-84.
[29] Danielopol, D.L. and Rouch, R. (2005) Invasion, active versus passive. In: Culver, D.C. and White, W.B., Eds., Encyclopedia of Caves, Elsevier Academic Press, Amsterdam, 305-310.
[30] Negrea, S. (2009) A remarkable finding that suggests the existence of a new groundwater biome based on chemo-autotrophic resources, named “Ophel” by F. D. Por. Travaux de l’Institut Speologie Emile Racovitza, 48, 83-91.
[31] Humphreys, W.F., Kornicker, L.S. and Danielopol, D.L (2010) On the origin of Danielopolina baltanasi sp.n. (Ostracoda, Thaumatocypridoidea) from the anchialine caves on Christmas Island a seamount in the Indian Ocean. Crustaceana, 82, 1177-1203. doi:10.1163/156854009X423157
[32] Porter, M.L. and Culver, D.C. (2010) Tethyan distribution of stygobionts: Fact or fiction? 20th International Conference on Subterranean Biology, Postojna, 29 August-3 September 2010.
[33] Sarbu, S.M. (2001) Movile, a chemoautotrophically based ecosystem. In: Wilkens, H., Culver, D.D. and Humphreys, W.F., Eds., Subterranean Ecosystems of the World 30, Elsevier, Amsterdam, 319-343.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.