Quasi-Biennial Modulation of the Solar Neutrino Flux: A “Telescope” for the Solar Interior


An oscillating magnetic field deep within the solar radiative region can significantly alter the helioseismic g-modes. The presence of density gradients along g-modes, can excite Alfvén waves resonantly, the resulting waveforms show sharp spikes in the density profile at radii comparable with the neutrino’s resonant oscillation length. This process should explain the observed quasi-biennial modulation of the solar neutrino flux. If confirmed, the coupling between solar neutrino flux and g-modes should be used as a “telescope” for the solar interior.

Share and Cite:

L. D’Alessi, A. Vecchio, V. Carbone, M. Laurenza and M. Storini, "Quasi-Biennial Modulation of the Solar Neutrino Flux: A “Telescope” for the Solar Interior," Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 49-56. doi: 10.4236/jmp.2013.44A008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Davis Jr., D. S. Harmer and K. C. Hoffman, “Search for Neutrinos from the Sun,” Physical Review Letters, Vol. 20, No. 21, 1968, pp. 1205-1209. doi:10.1103/PhysRevLett.20.1205
[2] W. R. Sheldon, “Possible Relation of a Null Solar Neutrino Flux to the II Year Solar Cycle,” Nature, Vol. 221, No. 5181, 1969, pp. 650-651. doi:10.1038/221650b0
[3] R. A. Donahue and S. L. Baliunas, “Periodogram Analysis of 240 Years of Sunspot Records,” Solar Physics, Vol. 141, No. 1, 1992, pp. 181-197. doi:10.1007/BF00155911
[4] Ya. B. Zeldovich, A. A. Ruzmaikin and D. D. Sokoloff, “Magnetic Fields in Astrophysics,” Gordon & Breach, New York, 1983.
[5] A. Pontieri, F. Lepreti, L. Sorriso-Valvo, A. Vecchio and V. Carbone, “A Simple Model for the Solar Cycle,” Solar Physics, Vol. 213, No. 1, 2003, pp. 195-201. doi:10.1023/A:1023227503176
[6] K. Sakurai, “Quasi-Biennial Variation of the Solar Neutrino Flux and Solar Activity,” Nature, Vol. 278, 1979, pp. 146-148. doi:10.1038/278146a0
[7] L. J. Lanzerotti and R. S. Raghavan, “Solar Activity and Solar Neutrino Flux,” Nature, Vol. 293, 1981, pp. 122-124. doi:10.1038/293122a0
[8] Y. Fukuda, et al., (Kamiokande Collaboration), “Solar Neutrino Data Covering Solar Cycle 22,” Physical Review Letters, Vol. 77, No. 9, 1996, pp. 1683-1686. doi:10.1103/PhysRevLett.77.1683
[9] G. A. Bazilevskaya, M. B. Krainev, V. S. Makhmutov, E. O. Flückiger, A. I. Sladkova and M. Storini, “Structure of the Maximum Phase of Solar Cycles 21 and 22,” Solar Physics, Vol. 197, No. 1, 2000, pp. 157-174. doi:10.1023/A:1026515520311
[10] A. Vecchio and V. Carbone, “On the Origin of the Double Magnetic Cycle of the Sun,” The Astrophysical Journal, Vol. 683, No. 1, 2008, pp. 536-541. doi:10.1086/589768
[11] J. F. Valdés-Galicia and V. M. Velasco, “Variations of Mid-Term Periodicities in Solar Activity Physical Phenomena,” Advances in Space Research, Vol. 41, No. 2, 2008, pp. 297-305. doi:10.1016/j.asr.2007.02.012
[12] A. Vecchio, M. Laurenza, V. Carbone and M. Storini, “Quasi-Biennial Modulation of Solar Neutrino Flux and Solar and Galactic Cosmic Rays by Solar Cyclic Activity,” The Astrophysical Journal, Vol. 709, No. 1, 2010, pp. L1-L5. doi:10.1088/2041-8205/709/1/L1
[13] A. Vecchio and V. Carbone, “Spatio-Temporal Analysis of Solar Activity: Main Periodicities and Period Length Variations,” Astronomy and Astrophysics, Vol. 502, No. 3, 2009, pp. 981-987. doi:10.1051/0004-6361/200811024
[14] J. F. Valdés-Galicia, R. Pérez-Enríquez and J. A. Otaola, “The Cosmic-Ray 1.68-Year Variation: A Clue to Understand the Nature of the Solar Cycle?” Solar Physics, Vol. 167, No. 1-2, 1996, pp. 409-417. doi:10.1007/BF00146349
[15] K. Mursula and J. H. Vilpolla, “Fluctuations of the Solar Dinamo Observed in the Solar Wind and Interplanetary Magnetic Field at 1 AU and in the Outer Heliosphere,” Solar Physics, Vol. 221, No. 2, 2004, pp. 337-349. doi:10.1023/B:SOLA.0000035053.17913.26
[16] M. Laurenza and M. Storini, “Interpretation of Quasi Periodic Variations in Solar Cosmic Ray Data,” Proceedings of the 31st ICRC, ?óD?, 2009.
[17] M. Laurenza, A. Vecchio, V. Carbone and M. Storini, “Quasi Biennial Modulation of Galactic Cosmic Rays,” The Astrophysical Journal, 2012 (in press).
[18] M. Laurenza, M. Storini, S. Giangravé and G. Moreno, “Search for Periodicities in the IMP8 Charged Particle Measurement Experiment Proton Fluxes for the Energy Bands 0.50 - 0.96 MeV and 190 - 440 MeV,” Journal of Geophysical Research, Vol. 114, No. 1A, 2009. doi:10.1029/2008JA013181
[19] J. Javaraiah, R. K. Ulrich, L. Bertello and J. E. Boyden, “Search for Short-Term Periodicities in the Sun’s Surface Rotation: A Revisit,” Solar Physics, Vol. 257, No. 1, 2009, pp. 61-69. doi:10.1007/s11207-009-9342-9
[20] R. Davis Jr. and J. C. Evans, “Experimental Limits on Extraterrestrial Sources of Neutrinos,” Proceeding of 13th International Conference on Cosmic Rays, Vol. 3, 1973, pp. 2001-2006.
[21] Y. Fukuda, et al., “Measurements of the Solar Neutrino Flux from Super-Kamiokande’s First 300 Days,” Physical Review Letters, Vol. 81, No. 6, 1998, pp. 1158-1162. doi:10.1103/PhysRevLett.81.1158
[22] L. M. Krauss, “Correlation of Solar Neutrino Modulation with Solar Cycle Variation in p-Mode Acoustic Spectra,” Nature, Vol. 348, No. 6300, 1990, pp. 403-407. doi:10.1038/348403a0
[23] J. N. Bahcall and W. H. Press, “Solar-Cycle Modulation of Event Rates in the Chlorine Solar Neutrino Experiment,” The Astrophysical Journal, Vol. 370, 1991, pp. 730-742. doi:10.1086/169856
[24] D. S. Oakley, H. B. Snodgrass, R. K. Ulrich and T. L. Vandekop, “On the correlation of solar surface magnetic flux with solar neutrino capture rate,” The Astrophysical Journal, Vol. 437, No. 1, 1994, pp. L63-L66. doi:10.1086/187683
[25] R. L. McNutt Jr., “Correlated Variations in the Solar Neutrino Flux and the Solar Wind and the Relation to the Solar Neutrino Problem,” Science, Vol. 270, No. 5242, 1995, pp. 1635-1639. doi:10.1126/science.270.5242.1635
[26] R. M. Wilson, “Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity,” The Astrophysical Journal, Vol. 545, No. 1, 2000, pp. 532-546. doi:10.1086/317787
[27] P. A. Sturrock, “Solar Neutrino Variability and Its Implications for Solar Physics and Neutrino Physics,” The Astrophysical Journal Letters, Vol. 688, No. 1, 2008, pp. L53-L56. doi:10.1086/594993
[28] O. G. Miranda, T. I. Rashba, A. I. Rez and J. W. F. Valle, “Enhanced Solar Antineutrino Flux in Random Magnetic Fields,” Physical Review D, Vol. 70, No. 11, 2004, Article ID: 113002. doi:10.1103/PhysRevD.70.113002
[29] P. Bamert, C. P. Burgess and D. Michaud, “Neutrino Propagation through Helioseismic Waves,” Nuclear Physics B, Vol. 513, No. 1-2, 1998, pp. 319-342. doi:10.1016/S0550-3213(97)00672-X
[30] C. P. Burgess, N. S. Dzhalilov, M. Maltoni, T. I. Rashba, V. B. Semikoz, M. A. Tórtola and J. W. F. Valle, “Large Mixing Angle Oscillations as a Probe of the Deep Solar Interior,” The Astrophysical Journal Letters, Vol. 588, No. 1, 2003, pp. L65-L68. doi:10.1086/375482
[31] C. P. Burgess, N. S. Dzhalilov, T. I. Rashba, V. B. Semikoz and J. W. F. Valle, “Resonant Origin for Density Fluctuations Deep within the Sun: Helioseismology and Magneto-Gravity Waves,” Monthly Notices of the Royal Astronomical Society, Vol. 348, No. 2, 2004, pp. 609-624. doi:10.1111/j.1365-2966.2004.07392.x
[32] A. Vecchio, L. D’Alessi, V. Carbone, M. Laurenza and M. Storini, “The Empirical Mode Decomposition to Study the Quasi-Biennial Modulation of Solar Magnetic Activity and Solar Neutrino Flux,” Advances in Adaptive Data Analysis, Vol. 4, No. 1-2, 2012, Article ID: 1250014. doi:10.1142/S1793536912500148
[33] L. D’Alessi, A. Vecchio, M. Laurenza, M. Storini and V. Carbone, “Solar Neutrino Flux Modulated by Solar Activity,” Proceeding of the International School of Physics “E. fermi”, Vol. 182: Neutrino Physics and Astrophysics, IOS Press, Amsterdam, 2012, pp. 349-351.
[34] R. Davis, Private Communications, 2004.
[35] J. N. Abdurashitov, et al., (SAGE Collaboration), “Measurement of the Solar Neutrino Capture Rate with Gallium Metal. III. Results for the 2002-2007 Data Tacking Period,” Physical Review C, Vol. 80, No. 1, 2009, Article ID: 015807, pp. 1-16. doi:10.1103/PhysRevC.80.015807
[36] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis,” Proceedings of the Royal Society A, Vol. 454, 1998, pp. 903-995. doi:10.1098/rspa.1998.0193
[37] D. A. T. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A. Nisalak, K. Ungchusak and D. S. Burke, “Travelling Waves in the Occurence of Dengue Haemorrhagic Fever in Thailand,” Nature, Vol. 427, 2004, pp. 344-347. doi:10.1038/nature02225
[38] J. Terradas, R. Oliver and J. L. Ballester, “Application of Statistical Techniques to the Analysis of Solar Coronal Oscillations,” The Astrophysical Journal, Vol. 614, No. 1, 2004, pp. 435-447. doi:10.1086/423332
[39] D. M. Simpson, A. F. C. Infantosi and D. A. Botero-Rosas, “Estimation and Significance Testing of Cross-Correlation between Cerebral Blood Flow Velocity and Background Electro-Encephalograph Activity in Signals with Missing Samples,” Medical and Biological Engineering and Computing, Vol. 39, No. 4, 2001, pp. 428-433. doi:10.1007/BF02345364
[40] S. T. Fletcher, A. M. Broomhall, D. Salabert, S. Basu, W. J. Chaplin, Y. Elsworth, R. A. Garcia and R. New, “A Seismic Signature of a Second Dinamo?” The Astrophysical Journal Letters, Vol. 718, No. 1, 2010, pp. L19-L22. doi:10.1088/2041-8205/718/1/L19

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.