Advances in Water Quality Monitoring of Inorganics: Current Trends


New methods of analysis for water quality monitoring to detect inorganic substances are required to meet the demands of determining concentration, particularly at low detection limits, analysing speciation and even identifying the pollution source. Such information is essential to inform public health decisions and to comply with more stringent legislation. This paper concentrates on two case studies, reviewing the development in monitoring methods, and predicting future trends. Arsenic and nitrates detection was selected as these pollutants are particularly problematic from a human health perspective. Additionally, the challenges faced in developing monitoring methods for these chemicals are relevant to a wide range of other inorganics. The current state of the art in detection approaches for these chemicals are discussed along with recommendations for future research to further improve the methods.

Share and Cite:

F. Bullough, C. Fenech and H. Bridle, "Advances in Water Quality Monitoring of Inorganics: Current Trends," Journal of Water Resource and Protection, Vol. 5 No. 4A, 2013, pp. 40-48. doi: 10.4236/jwarp.2013.54A007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Brettar and M. G. Hofle, “Molecular Assessment of Bacterial Pathogens—A Contribution to Drinking Water Safety,” Current Opinion in Biotechnology, Vol. 19, No. 3, 2008, pp. 274-280. doi:10.1016/j.copbio.2008.04.004
[2] M. Schriks, et al., “Toxicological Relevance of Emerging Contaminants for Drinking Water Quality,” Water Research, Vol. 44, No. 2, 2010, pp. 461-476. doi:10.1016/j.watres.2009.08.023
[3] R. M. Sharp and N. E. Skakkebaek, “Male Reproductive Disorders and the Role of Endocrine Disruption: Advances in Understanding and Identification of Areas for Future Research,” Pure and Applied Chemistry, Vol. 75, No. 11-12, 2003, pp. 2023-2038. doi:10.1351/pac200375112023
[4] World Health Organisation, “Guidelines for Drinking-Water Quality,” 2011.
[5] A. H. Smith, E. O. Lingas and M. Rahman, “Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency,” Bulletin of the World Health Organisation, Vol. 78, No. 9. 2000, p. 1093.
[6] M. A. Hossain, et al., “Ineffectiveness and Poor Reliability of Arsenic Removal Plants in West Bengal, India,” Environmental Science & Technology, Vol. 39, No. 11, 2005, pp. 4300-4306. doi:10.1021/es048703u
[7] H. A. L. Rowland, et al., “Geochemistry of Aquifer Sediments and Arsenic-Rich Groundwater from Kandal Province, Cambodia,” Applied Geochemistry, Vol. 23, No. 11, 2008, pp. 3029-3046. doi:10.1016/j.apgeochem.2008.06.011
[8] T. L. Root, et al., “Arsenic Geochemistry and Hydrostratigraphy in Midwestern US Glacial Deposits,” Ground Water, Vol. 48, No. 6, 2010, pp. 903-912. doi:10.1111/j.1745-6584.2009.00637.x
[9] M. Argos, et al., “Arsenic Exposure from Drinking Water, and All-Cause and Chronic-Disease Mortalities in Bangladesh (HEALS): A Prospective Cohort Study,” The Lancet, Vol. 376, No. 9737, 2010, pp. 252-258. doi:10.1016/S0140-6736(10)60481-3
[10] R. T. Carson, P. Koundouri and C. L. Nauges, “Arsenic Mitigation in Bangladesh: A Household Labor Market Approach,” American Journal of Agricultural Economics, Vol. 93, No. 2, 2011, pp. 407-414.
[11] A. Rahman, “Towards an Arsenic Safe Environment in Bangladesh,” BCAS, 2010.
[12] K. Gupta and U. C. Ghosh, “Arsenic Removal Using Hydrous Nanostructure Iron(III)-titanium(IV) Binary Mixed Oxide from Aqueous Solution,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 884-892. doi:10.1016/j.jhazmat.2008.04.034
[13] J. S. Yamani, et al., “Enhanced Arsenic Removal Using Mixed Metal Oxide Impregnated Chitosan Beads,” Water Research, Vol. 46, No. 14, 2012, pp. 4427-4434. doi:10.1016/j.watres.2012.06.004
[14] D. Mohan and C. U. Pittman, “Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review,” Journal of Hazardous Materials, Vol. 142, No. 1-2, 2007, pp. 1-53. doi:10.1016/j.jhazmat.2007.01.006
[15] K. S. Liu, et al., “Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters,” Journal of Physical Chemistry B, Vol. 109, No. 40, 2005, pp. 18719-18722. doi:10.1021/jp054546p
[16] D. E. Mays and A. Hussam, “Voltammetric Methods for Determination and Speciation of Inorganic Arsenic in the Environment—A Review,” Analytica Chimica Acta, Vol. 646, No. 1-2, 2009, pp. 6-16. doi:10.1016/j.aca.2009.05.006
[17] S. Yilmaz, et al., “Direct Quantitative Determination of Total Arsenic in Natural Hotwaters by Anodic Stripping Voltammetry at the Rotating Lateral Gold Electrode,” Current Analytical Chemistry, Vol. 5, No. 1, 2009, pp. 29-34. doi:10.2174/157341109787047934
[18] S. B. Rasul, et al., “Electrochemical Measurement and Speciation of Inorganic Arsenic in Groundwater of Bangladesh,” Talanta, Vol. 58, No. 1, 2002, pp. 33-43. doi:10.1016/S0039-9140(02)00254-0
[19] H. Strosnider, “Whole-Cell Bacterial Biosensors and the Detection of Bioavailable Arsenic,” US Environmental Protection Agency, 2003.
[20] C. French, et al., “Development of Biosensors for the Detection of Arsenic in Drinking Water, in Arsenic in the Environment: The Metabolism of Arsenite,” CRC Press—Taylor and Francis Group, London, 2012.
[21] K. De Mora, et al., “A pH-Based Sensor for Detection of Arsenic in Drinking Water,” Analytical and Bioanalytical Chemistry, Vol. 400, No. 4, 2011, pp. 1031-1039. doi:10.1007/s00216-011-4815-8
[22] K. Gibbon-Walsh, P. Salaun and C. M. G. van den Berg, “Arsenic Speciation in Natural Waters by Cathodic Stripping Voltammetry,” Analytica Chimica Acta, Vol. 662, No. 1, 2010, pp. 1-8. doi:10.1016/j.aca.2009.12.038
[23] F. G. Bodewig, P. Valenta and H. W. Nurnberg, “Trace Determination of As(III) and As(V) in Natural-Waters by Differential Pulse Anodic-Stripping Voltammetry,” Fresenius Zeitschrift Fur Analytische Chemie, Vol. 311, No. 3, 1982, pp. 187-191. doi:10.1007/BF00476644
[24] G. M. S. Alves, et al., “Simultaneous Electrochemical Determination of Arsenic, Copper, Lead and Mercury in Unpolluted Fresh Waters Using a Vibrating Gold Microwire Electrode,” Analytica Chimica Acta, Vol. 703, No. 1, 2011, pp. 1-7. doi:10.1016/j.aca.2011.07.022
[25] A. Profumo, D. Merli and M. Pesavento, “Voltammetric Determination of Inorganic As(III) and Total Inorganic as in Natural Waters,” Analytica Chimica Acta, Vol. 539, No. 1-2, 2005, pp. 245-250. doi:10.1016/j.aca.2005.02.062
[26] R. Prakash, R. C. Srivastava and P. K. Seth, “Direct Estimation of Total Arsenic Using a Novel Metal Side Disk Rotating Electrode,” Electroanalysis, Vol. 15, No. 17, 2003, pp. 1410-1414. doi:10.1002/elan.200302658
[27] P. Salaun, B. Planer-Friedrich and C. M. G. van den Berg, “Inorganic Arsenic Speciation in Water and Seawater by Anodic Stripping Voltammetry with a Gold Microelectrode,” Analytica Chimica Acta, Vol. 585, No. 2, 2007, pp. 312-322. doi:10.1016/j.aca.2006.12.048
[28] C. Kendall, “Tracing Nitrogen Sources and Cycling in Catchments,” In: M. J. Kendall, Ed., Isotope Tracers in Catchment Hydrology, Elsevier Science B.V., 1998, pp. 519-576. doi:10.1016/B978-0-444-81546-0.50023-9
[29] R. M. Monaghan, et al., “Linkages between Land Management Activities and Water Quality in an Intensively Farmed Catchment in Southern New Zealand,” Agriculture Ecosystems & Environment, Vol. 118, No. 1-4, 2007, pp. 211-222. doi:10.1016/j.agee.2006.05.016
[30] N. E. Camp, “Methemoglobinemia,” Journal of Emergency Nursing, Vol. 33, No. 2, 2007, pp. 172-174. doi:10.1016/j.jen.2006.11.007
[31] World Health Organisation, “Rolling Revision of the WHO Guidelines for Drinking-Water Quality,” Nitrates and Nitrites in Drinking Water, 2004.
[32] D. S. Powlson, T. M. Addiscott and N. Benjamin, “When Does Nitrate Become a Risk for Humans?” Journal of Environmental Quality, Vol. 37, No. 2, 2008, pp. 291-295. doi:10.2134/jeq2007.0177
[33] S. S. Kaushal, et al., “Tracking Nonpoint Source Nitrogen Pollution in Human-Impacted Watersheds,” Environmental Science Technology, Vol. 45, No. 19, 2011, pp. 8225-8232. doi:10.1021/es200779e
[34] L. I. Wassenaar, “Evaluation of the Origin and Fate of Nitrate in the Abbotsford Aquifer Using the Isotopes of 15N and 18O in ,” Applied Geochemistry, Vol. 10, No. 4, 1995, pp. 391-405. doi:10.1016/0883-2927(95)00013-A
[35] B. Deutsch, et al., “Quantification of Diffuse Nitrate Inputs into a Small River System Using Stable Isotopes of Oxygen and Nitrogen in Nitrate,” Organic Geochemistry, Vol. 37, No. 10, 2006, pp. 1333-1342. doi:10.1016/j.orggeochem.2006.04.012
[36] G. Bordeleau, et al., “Determination of the Origin of Groundwater Nitrate at an Air Weapons Range Using the Dual Isotope Approach,” Journal of Contaminant Hydrology, Vol. 98, No. 3-4, 2008, pp. 97-105. doi:10.1016/j.jconhyd.2008.03.004
[37] D. Kaown, et al., “Identification of Nitrate and Sulfate Sources in Groundwater Using Dual Stable Isotope Approaches for an Agricultural Area with Different Land Use (Chuncheon, Mid-Eastern Korea),” Agriculture, Ecosystems & Environment, Vol. 132, No. 3-4, 2009, pp. 223-231. doi:10.1016/j.agee.2009.04.004
[38] J. Bottcher, et al., “Using Isotope Fractionation of Nitrate-Nitrogen and Nitrate-Oxygen for Evaluation of Micro-Bial Denitrification in a Sandy Aquifer,” Journal of Hydrology, Vol. 114, No. 3-4, 1990, pp. 413-424. doi:10.1016/0022-1694(90)90068-9
[39] R. Aravena and W. D. Robertson, “Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic System Plume,” Ground Water, Vol. 36, No. 6, 1998, pp. 975-982. doi:10.1111/j.1745-6584.1998.tb02104.x
[40] W. A. Battaglin, et al., “Chemical and Isotopic Evidence of Nitrogen Transformation in the Mississippi River 1997-1998,” Hydrological Processes, Vol. 15, No. 7, 2001, pp. 1285-1300. doi:10.1002/hyp.214
[41] H. M. Baulch, et al., “Isotopic Character of Nitrous Oxide Emitted from Streams,” Environmental Science & Technology, Vol. 45, No. 11, 2011, pp. 4682-4688. doi:10.1021/es104116a
[42] C. A. I. Cravotta, “Use of Stable Isotopes of Carbon, Nitrogen, and Sulfur to Identify Sources of Nitrogen in Surface Waters in the Lower Susquehanna River Basin,” USGS, Pennsylvania, 1997.
[43] A. Nestler, et al., “Isotopes for Improved Management of Nitrate Pollution in Aqueous Resources: Review of Surface Water Field Studies,” Environmental Science and Pollution Research, Vol. 18, No. 4, 2011, pp. 519-533. doi:10.1007/s11356-010-0422-z
[44] D. Xue, et al., “Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface and Groundwater,” Water Research, Vol. 43, No. 5, 2009, pp. 1159-1170. doi:10.1016/j.watres.2008.12.048
[45] C. Fenech, et al., “The Potential for a Suite of Isotope and Chemical Markers to Differentiate Sources of Nitrate Contamination: A Review,” Water Research, Vol. 46, No. 7, 2012, pp. 2023-2041. doi:10.1016/j.watres.2012.01.044
[46] J. Stewart, J. W. Santo Domingo and T. J. Wade, “Fecal Pollution, Public Health, and Microbial Source Tracking,” In: S. M. Santo and J. W. Domingo, Eds., Microbial Source Tracking, ASM Press, Washington DC, 2007, pp. 1-32.
[47] E. E. Geldreich and B. A. Kenner, “Concepts of Fecal Streptococci in Stream Pollution,” Water Pollution Control Federation, Vol. 41, No. 8, 1969, pp. R336-R352.
[48] K. G. Field and M. Samadpour, “Fecal Source Tracking, the Indicator Paradigm, and Managing Water Quality,” Water Research, Vol. 41, No. 6, 2007. pp. 3517-3538. doi:10.1016/j.watres.2007.06.056
[49] V. J. Harwood, H. Ryu and J. Santo Domingo, “Microbial Source Tracking,” In: M. J. Sadowsky and R. L. Whitman, Eds., The Fecal Bacteria, ASM Press, Washington DC, 2011, pp. 189-216.
[50] P. Roslev and A. S. Bukh, “State of the Art Molecular Markers for Fecal Pollution Source Tracking in Water,” Applied Microbiology and Biotechnology, Vol. 89, No. 5, 2011, pp. 1341-1355. doi:10.1007/s00253-010-3080-7
[51] D. M. Stoeckel, et al., “Semi-Quantitative Evaluation of Fecal Contamination Potential by Human and Ruminant Sources Using Multiple Lines of Evidence,” Water Research, Vol. 45, No. 10, 2011, pp. 3225-3244. doi:10.1016/j.watres.2011.03.037
[52] D. M. Gordon, “Geographical Structure and Host Specificity in Bacteria and the Implications for Tracing the Source of Coliform Contamination,” Microbiology, Vol. 147, No. 5, 2001, pp. 1079-1085.
[53] C. Hagedorn, A. R. Blanch and V. J. Harwood, “Microbial Source Tracking: Methods, Applications, and Case Studies,” Springer, New York, 2011. doi:10.1007/978-1-4419-9386-1
[54] I. J. Buerge, et al., “Combined Sewer Overflows to Surface Waters Detected by the Anthropogenic Marker Caffeine,” Environmental Science & Technology, Vol. 40, No. 13, 2006, pp. 4096-4102. doi:10.1021/es052553l
[55] S. Sauvé, et al., “Fecal Coliforms, Caffeine and Carbamazepine in Stormwater Collection Systems in a Large Urban Area,” Chemosphere, Vol. 86, No. 2, 2012, pp. 118-123. doi:10.1016/j.chemosphere.2011.09.033
[56] R. Edwards, “Immunoassays: Essential Data,” Wiley: Published in Association with BIOS Scientific Publishers, Chichester, Oxford, 1996.
[57] A. Deng, et al., “Residue Analysis of the Pharmaceutical Diclofenac in Different Water Types Using ELISA and GC-MS,” Environmental Science & Technology, Vol. 37, No. 15, 2003, pp. 3422-3429. doi:10.1021/es0341945
[58] A. Bahlmann, et al., “Monitoring Carbamazepine in Surface and Wastewaters by an Immunoassay Based on a Monoclonal Antibody,” Analytical and Bioanalytical Chemistry, Vol. 395, No. 6, 2009, pp. 1809-1820. doi:10.1007/s00216-009-2958-7
[59] V. Calisto, et al., “Application of an ELISA to the Quantification of Carbamazepine in Ground, Surface and Wastewaters and Validation with LC-MS/MS,” Chemosphere, Vol. 84, No. 11, 2011, pp. 1708-1715. doi:10.1016/j.chemosphere.2011.04.072
[60] J. Carvalho, et al., “A Highly Sensitive Caffeine Immunoassay Based on a Monoclonal Antibody,” Analytical and Bioanalytical Chemistry, Vol. 396, No. 7, 2010, pp. 2617-2628. doi:10.1007/s00216-010-3506-1
[61] J. Kuby, et al., “Immunology,” W. H. Freeman, New York, 2007.
[62] J. R. Crowther and N. J. Totowa, “ELISA: Theory and Practice,” Humana Press, New York, 1995.
[63] S. Rebe Raz and W. Haasnoot, “Multiplex Bioanalytical Methods for Food and Environmental Monitoring,” TRAC Trends in Analytical Chemistry, Vol. 30, No. 9, 2011, pp. 1526-1537. doi:10.1016/j.trac.2011.04.016

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.