Cationic Metalloporphyrins Imobilized in Faujasite Zeolites as a Cytochrome P-450 Mimic

DOI: 10.4236/mrc.2013.22008   PDF   HTML     4,265 Downloads   7,391 Views   Citations

Abstract

Metalloporphyrins immobilized into NaY zeolite are described as catalysts for hydrocarbon oxyfuntionalization. Manganese(III) and iron(III)tetrakis(4-N-methylpyridyl)-porphyrin (MnP1 and FeP1), and manganese(III) and iron(III) tetrakis(4-N-benzylpiridil)-porphyrin (MnP2 and FeP2) were impregnated (MnP1-NaYimp, FeP1-NaYimp, MnP2-NaYimp, FeP2-NaYimp, respectively) and encapsulated (MnP1-NaY, FeP1-NaY, MnP2-NaY and FeP2-NaY) into the NaY zeolite. These catalysts were used in the oxidation of (Z)-cyclooctene, cyclohexane, and adamantane by iodosylbezene (PhIO). These systems were able to epoxidize (Z)-cyclooctene with cis-epoxycyclooctane yields as high as 100%. By using cyclohexane and adamantane as substrate, the susceptibility of the benzyl groups on the porphyrin ring of the MnP materials, led to a different distribution of the oxidized products. With FePs, this susceptibility was not detected because the species responsible for the oxidations, FeIV(O)P·+, is more active than MnV(O)P. In conclusion, cationic metalloporphyrins immobilized into NaX zeolites, are good cytochrome P-450 models is less polar solvents since the selectivity of the system indicates the “in cage” solvent oxygen rebound oxidative process.

Share and Cite:

L. Lôvo, F. Skrobot, G. Azzellini, Y. Iamamoto and I. Rosa, "Cationic Metalloporphyrins Imobilized in Faujasite Zeolites as a Cytochrome P-450 Mimic," Modern Research in Catalysis, Vol. 2 No. 2, 2013, pp. 47-55. doi: 10.4236/mrc.2013.22008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Paigen, “Hemoglobin as the Red Pigment of Microsomes,” Biochimica et Biophysica Acta, Vol. 19, No. 2, 1956, pp. 297-299. doi:10.1016/0006-3002(56)90431-0
[2] M. Klingenberg, “Pigments of Rat Liver Microsomes,” Archives of Biochemistry and Biophysics, Vol. 75, No. 2, 1958, pp. 376-386. doi:10.1016/0003-9861(58)90436-3
[3] T. Omura and R. Sato, “A New Cytochrome in Liver Microsomes,” Journal of Biological Chemistry, Vol. 237, No. 4, 1962, p. 1375.
[4] R. W. Estabrook, O. Rosenthal and D. Y. Cooper “Light Reversible Carbon Monoxide Inhibition of Steroid C21-Hydroxylase System of Adrenal Cortex,” Biochemische Zeitschrift, Vol. 338, 1963, p. 741.
[5] B. Meunier, S. P. de Visser and S. Shaik, “Mechanism of Oxidation Reactions Catalyzed by Cytochrome P-450 Enzymes,” Chemical Reviews, Vol. 104, No. 9, 2004, pp. 3947-3980. doi:10.1021/cr020443g
[6] B. Meunier, “Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage,” Chemical Reviews, Vol. 92, No. 6, 1992, 1411-1456. doi:10.1021/cr00014a008
[7] T. L. Poulos, “Peroxidase and Cytochrome P-450 Structures,” Academic Press, San Diego, 2000.
[8] S. Shaik, D. Kumar, S. P. de Visser, A. Altun and W. Thiel, “Theoretical Perspective on the Structure and Mechanism of Cytochrome P-450 Enzymes,” Chemical Reviews, Vol. 105, No. 6, 2005, pp. 2279-2328. doi:10.1021/cr030722j
[9] I. G. Denisov, T. M. Makris, S. G. Sligar and I. Schlichting, “Structure and Chemistry of Cytochrome P450,” Chemical Reviews, Vol. 105, 2005, pp. 2253-2277. doi:10.1021/cr0307143
[10] P. Hlavica, “Models and Mechanisms of O-O Bond Activation by Cytochrome P450-A Critical Assessment of the Potential Role of Multiple Active Intermediates in Oxidative Catalysis,” European Journal of Biochemistry, Vol. 271, No. 22, 2004, pp. 4335-4360. doi:10.1111/j.1432-1033.2004.04380.x
[11] D. Mansuy, “A Brief History of the Contribution of Metalloporphyrin Models to Cytochrome P-450 Chemistry and Oxidation Catalysis,” Comptes Rendus Chimie, Vol. 10, No. 4-5, 2007, pp. 392-413. doi:10.1016/j.crci.2006.11.001
[12] R. J. Nick, G. B. Ray, K. M. Fish, T. G. Spiro and J. T. Groves, “Evidence for a Weak Mn = O Bond and a Nonporphyrin Radical in Manganese-Substituted Horseradish-Peroxidase Compound-I,” Journal of the American Chemical Society, Vol. 113, No. 5, 1991, pp. 1838-1840. doi:10.1021/ja00005a062
[13] W. Nam, S. Park, I. K. Lim, M. H. Lim, J. Hong and J. Kim, “First Direct Evidence for Stereospecific Olefin Epoxidation and Alkane Hydroxylation by an Oxoiron(IV) Porphyrin Complex,” Journal of the American Chemical Society, Vol. 125, No. 48, 2003, pp. 14674-14675. doi:10.1021/ja0368204
[14] I. L. V. Rosa, C. M. C. P. Manso, O. A. Serra and Y. Iamamoto, “Biomimetical Catalytic Activity of Iron(III) Porphyrins Encapsulated in the Zeolite X,” Journal of Molecular Catalysis A—Chemical, Vol. 160, No. 2, 2000, pp. 199-208. doi:10.1016/S1381-1169(00)00214-4
[15] F. C. Skrobot, I. L. V. Rosa, A. P. A. Marques, P. R. Martins, J. Rocha, A. A. Valente and Y. Iamamoto, “Asymmetric Cationic Methyl Pyridyl and Pentafluorophenyl Porphyrin Encapsulated in zeolites: A Cytochrome P-450 model,” Journal of Molecular Catalysis A—Chemical, Vol. 237, No. 1-2, 2005, pp. 86-92. doi:10.1016/j.molcata.2005.05.001
[16] F. Bedioui, “Zeolite-Encapsulated and Clay-Intercalated Metal Porphyrin, Phthalocyanine and Schiff-Base Complexes as Models for Biomimetic Oxidation Catalysts— An Overview,” Coordination Chemistry Reviews, Vol. 144, 1995, pp. 39-68. doi:10.1016/0010-8545(94)08000-H
[17] G. Simonneaux, P. L. Maux, Y. Ferrand and J. Rault-Berthelot, “Asymmetric Heterogeneous Catalysis by Metalloporphyrins,” Coordination Chemistry Reviews, Vol. 250, No. 17-18, 2006, pp. 2212-2221. doi:10.1016/j.ccr.2006.01.014
[18] Z. Li, C. G. Xia and X. M. Zhang, “Preparation and Catalysis of DMY and MCM-41 Encapsulated Cationic Mn(III)-Porphyrin Complex,” Journal of Molecular Catalysis A—Chemical, Vol. 185, No. 1-2, 2002, pp. 47-56. doi:10.1016/S1381-1169(02)00120-6
[19] P. S. Traylor, D. Dolphin and T. G. Traylor, “Sterically Protected Hemins with Electronegative Substituents— Efficient Catalysts for Hydroxylation and Epoxidation,” Journal of the Chemical Society-Chemical Communications, Vol. 5, 1984, pp. 279-280. doi:10.1039/c39840000279
[20] D. Mansuy and P. Battioni, “Metalloporphyrins in Catalytic Oxidations,” Marcel Dekker, New York, 1994.
[21] J. F. Bartoli, K. L. Barch, M. Palacio, P. Battioni, D. Mansuy, “Iron Polynitroporphyrins Bearing up to Eight Betanitro Groups as Interesting New Catalysts for H2O2-Dependent Hydrocarbon Oxidation: Unusual Regioselectivity in Hydroxylation of Alkoxybenzenes,” Chemical Communications, Vol. 18, 2001, pp. 1718-1719. doi:10.1039/b105101f
[22] S. Evans and J. R. L. Smith, “The Oxidation of Ethylbenzene and other Alkylaromatics by Dioxygen Catalysed by Iron(III) tetrakis(pentafluorophenyl)porphyrin and Related Iron Porphyrins,” Journal of the Chemical Society-Perkin Transactions 2, Vol. 7, 2000, pp. 1541-1551. doi:10.1039/b000967i
[23] S. H. Wang, B. S. Mandimutsira, R. Todd, B. Ramdhanie, J. P. Fox and D. P. Goldberg, “Catalytic Sulfoxidation and Epoxidation with a Mn(III) Triazacorrole: Evidence for a Third Oxidant in High-Valent Porphyrinoid Oxidations,” Journal of the American Chemical Society, Vol. 126, No. 1, 2004, pp. 18-19. doi:10.1021/ja038951a
[24] M. S. M. Moreira, P. R. Martins, R. B. Curi, O. R. Nascimento and Y. Iamamoto, “Iron Porphyrins Immobilized on Silica Surface and Encapsulated in Silica Matrix: A Comparison of Their Catalytic Activity in Hydrocarbon Oxidation,” Journal of Molecular Catalysis A—Chemical, Vol. 233, No. 1-2, 2005, pp. 73-81. doi:10.1016/j.molcata.2005.01.045
[25] K. J. Ciuffi, H. C. Sacco, J. B. Valim, C. M. C. P. Manso, O. A. Serra, O. R. Nascimento, E. A. Vidoto and Y. Iamamoto, “Polymeric Organic-Inorganic Hybrid Material Containing Iron(III) Porphyrin Using Sol-Gel Process,” Journal of Non-Crystalline Solids, Vol. 247, 1999, pp. 146-152. doi:10.1016/S0022-3093(99)00053-8
[26] K. J. Ciuffi, H. C. Sacco, J. C. Biazzotto, E. A. Vidoto, O. R. Nascimento, C. A. P. Leite, O. A. Serra and Y. Iamamoto, “Synthesis of Fluorinated Metalloporphyrinosilica Imprinted with Templates through Sol-gel Process,” Jour- nal of Non-Crystalline Solids, Vol. 273, No. 1-3, 2000, pp. 100-108. doi:10.1016/S0022-3093(00)00149-6
[27] C. M. C. P. Manso, E. A. Vidoto, F. S. Vinhado, H. C. Sacco, P. R. Martins, K. J. Ciuffi, A. G. Ferreira, J. R. Lindsay-Smith, O. R. Nascimento and Y. Iamamoto, “Characterization and Catalytic Activity of Iron(III) mono(4-Nmethyl pyridyl)-tris(halophenyl) Porphyrins in Homogeneous and Heterogeneous Systems,” Journal of Molecular Catalysis A—Chemical, Vol. 150, No. 1-2, 1999, pp. 251-266. doi:10.1016/S1381-1169(99)00216-2
[28] F. S. Vinhado, P. R. Martins, A. P. Masson, D. G. Abreu, E. A. Vidoto, Y. Iamamoto and O. R. Nascimento, “Supported Iron(III)porphyrins Pentafluorophenyl-derivatives as Catalysts in Epoxidation Reactions by H2O2: The Role of the Silica-support and Sulfonatophenyl Residues in the Activation of the Peroxidic Bond,” Journal of Molecular Catalysis A—Chemical, Vol. 188, No. 1-2, 2002, pp. 141-151. doi:10.1016/S1381-1169(02)00233-9
[29] F. S. Vinhado, C. M. C. P. Manso, H. C. Sacco and Y. Iamamoto, “Cationic Manganese(III) Porphyrins Bound to a Novel Bis-Functionalised Silica as Catalysts for Hydrocarbons Oxygenation by Iodosylbenzene and Hydrogen Peroxide,” Journal of Molecular Catalysis A—Chemical, Vol. 174, No. 1-2, 2001, pp. 279-288. doi:10.1016/S1381-1169(01)00200-X
[30] A. L. Faria, C. Airoldi, F. G. Doro, M. G. Fonseca and M. D. Assis, “Anchored Ironporphyrins—The Role of Talc-Aminofunctionalyzed Phyllosilicates in the Catalysis of Oxidation of Alkanes and Alkenes,” Applied Catalysis A-General, Vol. 268, No. 1-2, 2004, pp. 217-226. doi:10.1016/j.apcata.2004.03.035
[31] A. A. Guedes, J. R. L. Smith, O. R. Nascimento, D. F. C. Guedes and M. D. Assis, “Catalytic Activity of Halogenated Iron Porphyrins in Alkene and Alkane Oxidations by Iodosylbenzene and Hydrogen Peroxide,” Journal of the Brazilian Chemical Society, Vol. 16, No. 4, 2005, pp. 835-843.doi:10.1590/S0103-50532005000500024
[32] M. A. Schiavon, L. S. Iwamoto, A. G. Ferreira, Y. Iamamoto, M. V. B. Zanoni and M. D. Assis, “Synthesis and Characterization of a Novel Series of Meso (Nitrophenyl) and Meso (CarboxyPhenyl) Substituted porphyrins,” Journal of the Brazilian Chemical Society, Vol. 11, No. 5, 2000, pp. 458-466. doi:10.1590/S0103-50532000000500005
[33] A. E. Shilov, “Chemical-Models of Metallo-Enzymes,” Journal of Molecular Catalysis, Vol. 47, No. 2-3, 1988, pp. 351-362. doi:10.1016/0304-5102(88)85060-0
[34] B. R. Cook, T. J. Reinert and K. S. Suslick, “Shape Selective Alkane Hydroxylation by Metalloporphyrin Catalysts,” Journal of the American Chemical Society, Vol. 108, No. 23, 1986, pp. 7281-7286. doi:10.1021/ja00283a024
[35] M. J. Nappa and C. A. Tolman, “Steric and Electronic Control of Iron Porphyrin Catalyzed Hydrocarbon Oxidations.” Inorganic Chemistry, Vol. 24, No. 26, 1985, pp. 4711-4719. doi:10.1021/ic00220a056
[36] Z. Gross and L. Simkhovich, “Hydroxylation of Simple Alkanes by Iodosylbenzene in Catalyzed more Efficiently by Second than by Third Generation Iron(III) Porphyrins,” Tetrahedron Letters, Vol. 39, No. 44, 1998, pp. 8171-8174. doi:10.1016/S0040-4039(98)01820-6
[37] A. Corma, “State of the Art and Future Challenges of Zeolites as Catalysts,” Journal of Catalysis, Vol. 216, No. 1-2, pp. 298-312. doi:10.1016/S0021-9517(02)00132-X
[38] Y. Iamamoto and K. J. Ciuffi, “Characterization and Catalytic Activity of 2,6-Dichlorophenyl Substituted Iron(III) Porphyrin Supported on Silica Gel and Imidazole Propyl Gel,” Journal of Molecular Catalysis A—Chemical, Vol. 116, No. 3, 1997, pp. 405-420. doi:10.1016/S1381-1169(96)00342-1
[39] R. F. Parton, G. J. Peere, P. E. Neysa, P. A. Jacobs, R. Claessens and G. V. Baron, “Cyclohexane Oxidation with Tertiary-Butylhydroperoxide Catalyzed by Iron-Phthalocyanines Homogeneously and Occluded in Y Zeolite,” Journal of Molecular Catalysis A–Chemical, Vol. 113, No. 3, 1996, pp. 445-454. doi:10.1016/S1381-1169(96)00111-2
[40] B. Z. Zhan and X. Y. Li, “A Novel ‘build-bottle- around-ship’ Method to Encapsulate Metalloporphyrins in Zeolite-Y. An Efficient Biomimetic Catalyst,” Chemical Communications, Vol. 1998, No. 3, 1998, pp. 349-350. doi:10.1039/a706030k
[41] F. C. Skrobot, “Synthesis and Haracterization of Manganese and Iron Porphyrins Encapsulated in Zeolites: Catalytics Studies in the Homogeneous and Heterogeneous Systems,” Thesis, University of S?o Paulo, S?o Carlos, 2004.
[42] F. C. Skrobot, A. A. Valente, G. Nevesa, I. Rosa, J. Rocha and J. A. S. Cavaleiro, “Monoterpenes Oxidation in the Presence of Y Zeolite-Entrapped Manganese(III) Tetra (4-N-benzylpyridyl)porphyrin,” Journal of molecular catalysis A–Chemical, Vol. 201, No. 1-2, 2003, pp. 211-222. doi:10.1016/S1381-1169(03)00181-X
[43] T. A. Khan and J. A. Hriljac, “Hydrothermal Synthesis of Microporous Materials with the Direct Incorporation of Porphyrin Molecules,” Inorganica Chimica Acta, Vol. 294, No. 2, 1999, pp. 179-182. doi:10.1016/S0020-1693(99)00247-9
[44] C. V. McDaniel and P. K. Maher, In: J. A. Rabo, Ed., Zeolite Chemistry and Catalysis, ACS, Washington DC, 1976, chapter 4.
[45] K. J. Balkus Jr., A. G. Gabrielov, S. L. Bell, F. Bedioui, L. Roue and J. Devynck, “Zeolite Encapsulated Cobalt(ii) and Copper(ii) Perfluorophthalocyanines-Synthesis and Characterization,” Inorganic Chemistry, Vol. 33, No. 1, 1994, pp. 67-72. doi:10.1021/ic00079a013
[46] W. Zhang, P. G. Smirniotis, M. Gangoda and R. N. Bose, “Bronsted and Lewis Acid sites in Dealuminated ZSM-12 and Beta Zeolites Characterized by NH3-STPD, FT-IR, and MAS NMR Spectroscopy,” Journal of Physical Chemistry B, Vol. 104, No. 17, 2000, pp. 4122-4129. doi:10.1021/jp993072p
[47] J. L. McLain, J. Lee and J. T. Groves, “Biomimetic Oxidations Catalyzed by Transition Metal Complexes,” Imperial College Press, London, 2000, p. 91. doi:10.1142/9781848160699_0003
[48] J. T. Groves, W. J. Kruper and R. C. Haushalter, “Hydro-carbon Oxidations with Oxometalloporphinate. Isolation and Reactions of a (Porphinato)Manganese(v) Complex,” Journal of the American Chemical Society, Vol. 102, No. 20, 1980, pp. 6375-6377. doi:10.1021/ja00540a050
[49] G. S. Nunes, I. Mayer, H. E. Toma, K. Araki, “Kinetics and Mechanism of Cyclohexane Oxidation Catalyzed by Supramolecular Manganese(III) Porphyrins,” Journal of Catalysis, Vol. 236 No.1, 2005, pp. 55-61. doi:10.1016/j.jcat.2005.09.003
[50] J. R. Lindsay-Smith, Y. Iamamoto and F. S. Vinhado, “Oxidation of Alkanes by Iodosylbenzene (PhIO) Catalysed by Supported Mn(III) Porphyrins: Activity and Mechanism,” Journal of Molecular Catalysis A—Chemical, Vol. 252, No. 1-2, 2006, pp. 23-30. doi:10.1016/j.molcata.2006.01.064
[51] D. H. R. Barton and D. Doller, “The Selective Functionalization of Saturated Hydrocarbons—Gif Chemistry,” Accounts of Chemical Research, Vol. 25, No. 11, 1992, pp. 504-512. doi:10.1021/ar00023a004
[52] J. T. Groves, T. E. Nemo and R. S. Myers, “Hydroxylation and Epoxidation Catalyzed by Iron-Porphine Complexes-Oxygen-Transfer from Iodosylbenzene,” Journal of the American Chemical Society, Vol. 101, No. 4, 1979, pp. 1032-1033. doi:10.1021/ja00498a040

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.