A Study on Quark-Gluon Plasma Equation of State Using Generalized Uncertainty Principle

DOI: 10.4236/jmp.2013.44A003   PDF   HTML     4,265 Downloads   6,528 Views   Citations


The effects of Generalized Uncertainty Principle, which has been predicted by various theories of quantum gravity replacing the Heisenbergs uncertainty principle near the Planck scale, on the thermodynamics of ideal Quark-Gluon Plasma (QGP) consisting of two and three flavors are included. There is a clear effect on thermodynamical quantities like the pressure and the energy density which means that a different effect from quantum gravity may be used in enhancement the theoretical results for Quark-Gluon Plasma state of matter. This effect looks like the technique used in lattice QCD simulation. We determine the value of the bag parameter from fitting lattice QCD data and a physical interpretation to the negative bag pressure is introduced.

Share and Cite:

N. Naggar, L. Abou-Salem, I. Elmashad and A. Ali, "A Study on Quark-Gluon Plasma Equation of State Using Generalized Uncertainty Principle," Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 13-20. doi: 10.4236/jmp.2013.44A003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. F. Ali, S. Das and E. C. Vagenas, “Discreteness of Space from the Generalized Uncertainty Principle,” Physics Letters B, Vol. 678, No. 5, 2009, p. 497-499. doi:10.1016/j.physletb.2009.06.061
[2] A. F. Ali, S. Das and E. C. Vagenas, “The Generalized Uncertainty Principle and Quantum Gravity Phenomenology,” 2010. arXiv:1001.2642[hep-th]
[3] S. Das, E. C. Vagenas and A. F. Ali, “Discreteness of Space from GUP II: Relativistic Wave Equations,” Physics Letters B, Vol. 690, No. 4, 2010, p. 407-412. arXiv:1005.3368[hep-th]
[4] T. Thiemann, “A Length Operator for Canonical Quantum Gravity,” Journal of Mathematical Physics, Vol. 39, No. 6, 1998, pp. 3372-3392. doi:10.1063/1.532445
[5] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. Kim and C. Brukner, “Probing Planck-Scale Physics with Quantum Optics,” Nature Physics, Vol. 8, 2012, pp. 393-397. doi:10.1038/nphys2262
[6] S. Das and E. C. Vagenas, “Universality of Quantum Gravity Corrections,” Physical Review Letters, Vol. 101, No. 22, 2008, Article ID: 221301. doi:10.1103/PhysRevLett.101.221301
[7] S. Das and E. C. Vagenas, “Phenomenological Implications of the Generalized Uncertainty Principle,” Canadian Journal of Physics, Vol. 87, No. 3, 2009, pp. 233-240. doi:10.1139/P08-105
[8] A. F. Ali, S. Das and E. C. Vagenas, “A Proposal for Testing Quantum Gravity in the Lab,” Physical Review D, Vol. 84, 2011, Article ID: 044013. arXiv:1107.3164[hep-th]
[9] A. F. Ali, “Minimal Length in Quantum Gravity, Equivalence Principle and Holographic Entropy Bound,” Classical and Quantum Gravity, Vol. 28, 2011, Article ID: 065013. arXiv:1101.4181[hep-th]
[10] R. Collela, A. W. Overhauser and S. A. Werner, “Observation of Gravitationally Induced Quantum Interference,” Physical Review Letters, Vol. 34, No. 23, 1975, pp. 1472- 1474. doi:10.1103/PhysRevLett.34.1472
[11] K. C. Littrell, B. E. Allman and S. A. Werner, “Two-Wavelength-Difference Measurement of Gravitationally Induced Quantum Interference Phases,” Physical Review A, Vol. 56, No. 3, 1997, pp. 1767-1780. doi:10.1103/PhysRevA.56.1767
[12] A. Camacho and A. Camacho-Galvan, “Test of Some Fundamental Principles in Physics via Quantum Interference with Neutrons and Photons,” Reports on Progress in Physics, Vol. 70, 2007, pp. 1-56. arXiv:0810.1325[gr-qc]
[13] K. Yagi, T. Hatsuda and Y. Miake, “Quark-Gluon Plasma from Big Bang to Little Bang,” Cambridge University Press, Cambridge, 2005.
[14] W.Greiner, L. Neise and H. Stocker, “Thermodynamics and Statistical Mechanics, 1997,” Thermodynamics and Statistical Mechanics, 1997.
[15] J. Letessier and J. Rafelski, “Hadrons and Quark-Gluon Plasma,” Cambridge University Press, Cambridge, 2004.
[16] A. S. Kapoyannis, “The Gibbs Equilibrium Conditions Applied to the QGP—Hadron Transition Curve,” The European Physical Journal C, Vol. 51, No. 4, 2007, p. 1013. doi:10.1140/epjc/s10052-007-0374-8
[17] V. V. Begun, M. I. Gorenstein and O. A. Mogilevsky, “Modified Bag Models for the Quark Gluon Plasma Equation of State,” International Journal of Modern Physics E, Vol. 20, 2011, pp. 1805-1815. arXiv:1004.0953v3[hep-ph]
[18] V. V. Begun, M. I. Gorenstein and O. A. Mogilevsky, “Equation of State for the Quark Gluon Plasma with the Negative Bag Constant,” Ukrainian Journal of Physics, Vol. 55, No. 9, 2010, p. 1049. arXiv:1001.3139[hep-ph]
[19] M. I. Gorenstein and O. A. Mogilevsky, “On a Non-Perturbative Pressure Effect in Lattice QCD,” Zeitschrift für Physik C Particles and Fields, Vol. 38, No. 1, 1988, pp. 161-163. doi:10.1007/BF01574531
[20] M. I. Gorenstein and S. N. Yang, “Gluon Plasma with a Medium-Dependent Dispersion Relation,” Physical Review D, Vol. 52, No. 9, 1995, pp. 5206-5212. doi:10.1103/PhysRevD.52.5206
[21] F. Karsch, E. Laermann and A. Peikert, “The Pressure in 2, 2 + 1 and 3 Flavour QCD,” Physics Letters B, Vol. 478, No. 4, 2000, pp. 447-455. doi:10.1016/S0370-2693(00)00292-6
[22] P. N. Bogolioubov, “Sur un Modéle a Quarks Quasi-Indépendants,” Annales de l’Institut Henri Poincaré, Vol. 8, No. 2, 1967, pp. 163-189.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.