The Use of VHSR Imagery for Wildland Fire Prevention: Application to Land-Clearing Management in the South of France


Every year, the French Mediterranean area is subject to wildland fires. The prevention policy promotes the major role of forest layout, for which it is necessary to build appropriate facilities such as reducing ignition and fire propagation risks near the borders of roads and tracks, creating forest tracks to allow firefighters to move safely through the forest during a fire, creating fuel breaks in order to divide up forests and limit the propagation of fire. Land-clearing along a forest track consists in creating discontinuity between the herbaceous stratum and the tree stratum by eliminating the shrubby stratum and cutting tree crowns. It avoids fire propagation by convection, and enables firefighters to deal with the fire in safety. The main difficulty for forest officers is to identify an optimized method to select appropriate tracks to clear, because it is impossible to clear all the tracks each year. Remote sensing tools would seem to be particularly useful for obtaining the best strategic and economic overview of forest tracks at departmental scale. This theme “land-clearing evaluation method” was selected as a target application for the images derived from the new Pleiades sensors: products and services required by end users. The objective of this work is to assess the real potentiality of such Very High Spatial Resolution (VHSR) imagery for land-clearing management. The methodology used consists in image classification and spatial analysis in order to extract land-clearing quality, and also evaluation of land-clearing quality based on field questionnaires validated through interactions with firefighters and rangers. The development of this methodology and its application to QuickBird images-used as Pleiades data simulations-successfully showed that VHSR Imagery is useful for preventing fire risk. It seems to be a good perspective for providing operational mapping services to help land-clearing management.

Share and Cite:

S. Sauvagnargues, P. Ayral, B. Kabar, D. Salze, V. Thierion and D. Marechal, "The Use of VHSR Imagery for Wildland Fire Prevention: Application to Land-Clearing Management in the South of France," Journal of Geographic Information System, Vol. 5 No. 2, 2013, pp. 161-174. doi: 10.4236/jgis.2013.52016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, “Prévention des incendies de foret,” 2012. dinformation_MAAF_2012_cle45934d.pdf
[2] D.S.C., “Guide de Stratégie Générale en Matière de Protection de la Forêt Contre l’Incendie,” Ministère de l’Intérieur, Direction de la Sécurité Civile, 1994, p. 14.
[3] E. Rigolot and D. Alexandrian, “Learning from Fuel-Break Behaviour during the 2003 Larges Fires in South Eastern France,” Forest Ecology and Management, Vol. 234, 2006, p. 227. doi:10. 1016/j.foreco.2006.08.254
[4] N. Cassagne, F. Pimont, J.-L. Dupuy, R. Linn, A. Marell, C. Oliveri and E. Rigolot, Using a Fire Propagation Model to Assess the Efficiency of Prescribed Burning in Reducing the Fire Hazard,” Ecological Modelling, Vol. 222, No. 8, 2011, pp. 1502-1514. doi:10.1016/j.ecolmodel.2011.02.004
[5] L. R. Green, “Fuelbreaks and Other Fuel Modification for Wildland Fire Control,” US Department of Agriculture Handbook, 1977.
[6] D.D.S.C., “Guide National de Référence, Techniques Professionnelles,” Manouvres Feux de Forêts. Ministere de l’Interieur, Direction de la Défense et Sécurité Civiles, 2008, p. 105.
[7] R. Lasaponara and A. Lanorte, “On the Capability of Satellite VHR QuickBird Data for Fuel Type Characterization in Fragmented Landscape,” Ecological Modelling, Vol. 204, No. 1-2, 2007, pp. 79-84.
[8] F. Jacques, “Methodologie Expérimentale Pour la Determination des Limites d’Emploi des équipements de Protection Individuelle des Sapeurs-Pompiers—Application à la Lutte Contre le feu par des Essais sur l’Homme en Conditions Opérationnelles,” Thèse de Doctorat, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2008, p. 259.
[9] DDSIS83, “Guide des Equipements de DFCI,” Préfecture du Var, 2004, p. 51.
[10] M. Finney, “Design of Regular Landscape Fuel Treatment Patterns for Modifying Fire Growth and Behavior,” Forest Science, Vol. 47, No. 2, 2001, pp. 219-228.
[11] E. Chuvieco, J. Wagtendonk, D. Riano, M. Yebra and S. L. Ustin, “Estimation of Fuel Conditions for Fire Danger Assessment,” Earth Observation of Wildland Fires in Mediterranean Ecosystems, 2009, pp. 83-96. doi:10.1007/978-3-642-01754-4_7
[12] Equipe PYROSCOPE, “Efficacite des Coupures de Combustible Face au feu, Feux de Saint CYPRIEN,” 9 Aout 2002, Communes de LECCI et ZONZA. Ministère Agriculture et Forêts, SDIS de Corse du Sud, 2002, p. 18.
[13] CEMAGREF, “Guide Technique du Forestier Méditerraneen Francais, Protection des Forêts Contre l’Incendie,” Chapitre 4, Technical Report, Aix en Provence, 1990, p. 65.
[14] M. Etienne and E. Rigolot, “Méthodes de Suivi des Coupures de Combustible,” Réseau Coupures de Combustible RCC 1st édition, de la Cardère Morières, 2001, 48 p.
[15] E. Rigolot, L. Castelli, M. Cohen, M. Costa and Y. Duché, “Recommendations for Fuel-Break Design and Fuel Management at the Wildland Urban Interface: An Empirical Approach in South Eastern France,” Institute of Mediterranean Forest Ecosystems and Forest Products Warm International Workshop, Athènes, 2004, pp. 131-142.
[16] H. Hesseln and D. B. Rideout, “Economic Principles of Wildland Fire Management Policy,” USDA Forest Service, General Technical Report, PSW-GTR-173, 1999, p. 9.
[17] L. A. Arroyo, C. Pascual and J. A. Manzanera, “Fire Models and Methods to Map Fuel Types: The Role of Remote Sensing,” Forest Ecology and Management, Vol. 256, No. 6, 2008, pp. 1239-1252. doi:10.1016/j.foreco.2008.06.048
[18] D. Riano, E. Chuvieco, J. Salas, A. Palacios-Orueta and A. Bastarrika, “Generation of Fuel Type Maps from Landsat TM Images and Ancillary Data in Mediterranean Ecosystems,” Canadian Journal of Forest Research, Vol. 32, No. 8, 2002, pp. 1301-1315.
[19] R. E. Keane, R. Burgan and J. Van Wagtendonk, “Mapping Wildland Fuels for Fire Management across Multiple Scales: Integrating Remote Sensing, GIS, and Biophysical Modeling,” International Journal of Wildland Fire, Vol. 10, No. 3-4, 2001, pp. 301-319. doi:10.1071/WF01028
[20] F. De Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “Pleiades-HR Image System Products and Quality, Pleiades-HR Image System Products and Geometric Accuracy,” ISPRS International Conference, Hanover, 17-20 May 2005.
[21] P. Kubik, V. Pascal, C. Latry and S. Baillarin, “Pleiades Image Quality: From Users’ Needs to Products Definition. Sensors, Systems, and Next-Generation Satellites IX,” Proceedings of the SPIE, Vol. 5978, 2005, pp. 188-198. doi:10.1117/12.627570
[22] S. J. Pyne, P. L. Andrews and R. D. Laven, “Introduction to Wildland Fire,” 2nd Edition, John Wiley & Sons, Inc., New York, 1996.
[23] D. F. Merrill, M. E. Alexander, “Glossary of Forest Fire Management Terms,” 4th Edition, National Research Council of Canada, Canadian Committee on Forest Fire Management, Ottawa, 1987.
[24] M. Samson, “Le Monde,” 26 Aout 2003.
[25] Préfecture du Var, “Document d’Objectifs,” Massif des Maure, Vol. I, Analyses et Objectifs, 2009.
[26] Deliot and Duffaut, “The Importance of Characterizing a Versatile Digital Camera System,” SPIE Newsroom, the International Society for Optical Engineering.
[27] L. Wang, W. P. Sousa, P. Gong and G. Biging, “Comparison of IKONOS and QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of Panama,” Remote Sensing of Environment, Vol. 91, No. 3-4, 2004, pp. 432-440. doi:10.1016/j.rse.2004.04.005
[28] F. Kayitakire, C. Hamel and P. Defourny, “Retrieving Forest Structure Variables Based on Image Texture Analysis and IKONOS-2 Imagery,” Remote Sensing of Environment, Vol. 102, No. 3-4, 2006, pp. 390-401. doi:10.1016/j.rse.2006.02.022
[29] F. M. B. van Coillie, L. P. C. Verbeke and R. R. De Wulf, “Feature Selection by Genetic Algorithms in Object-Based Classification of IKONOS Imagery for Forest Mapping in Flanders, Belgium,” Remote Sensing of Environment, Vol. 110, No. 4, 2007, pp. 476-487. doi:10.1016/j.rse.2007.03.020
[30] G. Mallinis, N. Koutsias, M. T. Strati and M. Karteris, “Object Based Classification Using QuickBird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 63, No. 2, 2008, pp. 237-250. doi:10.1016/j.isprsjprs.2007.08.007
[31] N. Masini and R. Lasaponara, “Investigating the Spectral Capability of QuickBird Data to Detect Archaeological Remains Buried under Vegetated and Not Vegetated Areas,” Journal of Cultural Heritage, Vol. 8, No. 1, 2007, 53-60. doi:10.1016/j.culher.2006.06.006
[32] S. Steiniger and A. J. S. Hunter, “The Free and Open Source GIS Software Map—A Guide to Facilitate Research, Development, and Adoption,” Computers, Environment and Urban Systems, 2012. doi:10.1016/j.compenvurbsys.2012.10.003
[33] R. Caloz, and C. Collet, “Précis de Télédétection, Traitements Numériques d’Images de Télédétection,” Vol. 3, Presses de l'Université du Québec—Agence Universitaire de la Francophonie, Quebec, 2001.
[34] A. Karsenty, F. Alzir and J.-S. Centeno, “Classification Orientée Objet de la Perméabilité des Sols en Zone Urbaine à l’Aide d’Imagerie Très Haute Résolution et de Données Laser Scanner à Curitiba (Brésil),” INPE, Institute Nacional de Pesquisas Espaciais, 2007, pp. 565-572.
[35] U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, “Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 58, No. 3-4, 2004, pp. 239-258. doi:10.1016/j.isprsjprs.2003.10.002
[36] J. Qian, Q. Zhou and Q. Hou, “Comparison of Pixel-Based and Object-Oriented Classification Methods for Extracting Built-Up Areas in Arid Zone,” ISPRS Workshop on Updating Geo-Spatial Databases with Imagery & the 5th ISPRS Workshop on DMGISs, Urumchi, August 2007, pp. 28-29.
[37] L. A. Arroyo, S. P. Healey, W. B. Cohen and D. Cocero, “Using Object-Oriented Classification and High-Resolution Imagery to Map Fuel Types in a Mediterranean Region,” Journal of Geophysical Research, Vol. 111, No. G4, 2006.
[38] C. Corbane, N. Baghdadi, S. Hosford, J. Somma and S. Chevrel, “Application d’Une Méthode de Classification Orientée Objet Pour la Cartographie de l’Occupation du sol: Résultats sur ASTER et Landsat ETM,” Revue Francaise de Photogrammétrie et de Télédétection, 2004, pp. 13-26.
[39] S. Mansor, W. Hong and A. R. M. Shariff, “Object Oriented Classification for Land Cover Mapping,” Proceedings of the 23rd Asian Conference on Remote Sensing, 2002, pp. 7-9.
[40] P. Hofmann, “Detecting Informal Settlements from IKONOS Image Data Using Methods of Object Oriented Image Analysis—An Example from Capetown (South Africa),” Second Internat. Symposium on Remote Sensing of Urban Areas, Regensburg, 2001, pp. 107-118.
[41] V. Thierion, D. Maréchal, P.-A. Ayral, M. C. Lyx, V. Foitier, S. Sauvagnargues-Lesage and J.-C. Poppi, “VHSR Imagery Potentialities for Cleared Shrubland Detection in Operational Fire Management, SPACEAPPLI08-Toulouse, 2008.
[42] OTB, “The ORFEO Tool Box Software Guide Updated for OTB-3.0.,” CNES, Ed., Toulouse, 2009, p. 670.
[43] Y. J. Kaufman and D. Tanre, “Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS,” IEEE Transactions on Geoscience and Remote Sensing, New York, 1992, pp. 261-270.
[44] D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” Proceedings of the International Conference on Computer Vision, 1999, pp. 1197-1203.
[45] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, Vol. 20, No. 3, 1995, pp. 273-297. doi:10.1007/BF00994018
[46] B. Koetz, F. Morsdorf, S. Van der Linden, T. Curt and B. Allgower, “Multi-Source Land Cover Classification for Forest Fire Management Based on Imaging Spectrometry and Lidar Data,” Forest Ecology and Management, Vol. 256, No. 3, 2008, pp. 263-271. doi:10.1016/j.foreco.2008.04.025
[47] B. Kabar, “Developpement d’Une Méthodologie de Traitement d’Images Pour le Suivi des Zones Debroussaillees de Defense des Forêts Contre les Incendies,” Memoire de Master II, Université Toulouse III/Ecole des Mines d’Ales, 2009.
[48] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational an Psychological Measurement, Vol. 20, No. 1, 1960, pp. 27-46.
[49] F. Perrot, “Développement d’un Outil d’Aide à la Décision Basé sur l’Imagerie Satellite Pour la Gestion des Zones Débroussaillées de DFCI,” Mémoire de Master II, Université Rennes II/Ecole des Mines d’Alès, 2010.
[50] R. Oz, “Développement d’un Outil Opérationnel Dédié au Suivi des Zones Débroussaillées Pour la Prévention des Incendies de Forêts en Méditerranée: Validation Operationnelle des Seuils établis avec les Utilisateurs Finaux,” Mémoire de Master II, Université Rennes II/Ecole des Mines d’Alès, 2011.
[51] P. Konstantinidis, G. Tsiourlis and P. Xofis, “Effect of Fire Season, Aspect and Pre-Fire Plant Size on the Growth of Arbutus Unedo L. (Strawberry Tree) Resprouts,” Forest Ecology and Management, Vol. 225, No. 1-3, 2006, pp. 359-367.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.