Spectroscopic measurement of Stark broadening parameter of the 636.2 nm Zn I-line

DOI: 10.4236/ns.2013.54063   PDF   HTML   XML   4,265 Downloads   6,585 Views   Citations


In this article we will present an attempt to measure the Stark broadening parameter of the Zn I-line at 636.23 nm utilizing the optical emission spectroscopy (OES) technique, taking into consideration the possibility of existence of self absorption. This method is standing on comparison of the Lorentzian FWHM and spectral line intensity of the unknown Stark broadening parameter line (Zn I-636.23 nm—in our case) to a well known Stark parameter line (e.g. Zn I-lines at 472.2, 481 and 468 nm) at a reference electron density of 2.7 × 1017 cm-3 and temperature of 1 eV. We have utilized the emission spectral data acquired from well diagnosed plasma produced by the interaction of Nd: YAG laser at wavelength of 1064 nm with ZnO nanomaterial target in open air. The results indicates that the Stark broadening of the Zn I-line at 636.23 nm is centered at 5.06 ± 0.03 ? with a 25% uncertainty at the given reference plasma parameters. The knowledge of the Stark broadening parameter of the 636.23 nm line may be important in the diagnostics of the laser plasma experiments especially in the absence of the Hα-line.

Share and Cite:

Sherbini, A. , Aboulfotouh, A. , Rashid, F. , Allam, S. , Al-Kaoud, A. , Dakrouri, A. and Sherbini, T. (2013) Spectroscopic measurement of Stark broadening parameter of the 636.2 nm Zn I-line. Natural Science, 5, 501-507. doi: 10.4236/ns.2013.54063.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dimitrijevic, M.S., Kovacevic, A., Simic, Z. and Sahal Brechot, S. (2011) Stark broadening of several Ne II, Ne III and O III spectral lines for the Stark-B database. Baltic Astronomy, 20, 580-586.
[2] Simic, Z., Dimitrijevic, M.S., Kovacevic, A. and Sahal Brechot, S. (2011) Stark broadening of In III lines in astrophysical and laboratory plasma. Baltic Astronomy, 20, 613-617.
[3] Miller, M.H. and Bengtson, R.D. (1970) Measured Stark widths and shifts for neutral atomic lines. Physical Re view A, 1, 983-990. doi:10.1103/PhysRevA.1.983
[4] Schinkoth, D., Kock, M. and Schulz-Gulde, E. (2000) Ex perimental Stark broadening parameters for near-infrared Ar I and Kr I lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 64, 635-643. doi:10.1016/S0022-4073(99)00155-7
[5] Stark, M.J. (1994) Width measurements of neutral argon lines and comparison with analogous transitions for homologous atoms. Acta Physica Polonica, 86, 315-326.
[6] Bues, I., Haag, T. and Richter, J. (1969) Spectroscopic investigation of an argon arc plasma. Astronomy & Astrophysics, 2, 249-250.
[7] Jones, D.W., Pichler, G. and Wiese, W.L. (1987) Asymmetries in spectral lines due to plasma-ion broadening: Some unusual cases and a possible test for plasma homogeneity. Physical Review A, 35, 2585-2590. doi:10.1103/PhysRevA.35.2585
[8] Jones, D.W., Wiese, W.L. and Woltz, L.A. (1986) Ion broadening of Ar I lines in a plasma. Physical Review A, 34, 450-456. doi:10.1103/PhysRevA.34.450
[9] Hahn, T.D. and Woltz, L.A. (1990) Ion broadening pa rameters for several argon and carbon lines. Physical Re view A, 42, 1450-1453. doi:10.1103/PhysRevA.42.1450
[10] Jones, D.W. and Wl, W. (1984) Asymmetry patterns of plasma-broadened isolated lines (C I). Physical Review A, 30, 2602-2608. doi:10.1103/PhysRevA.30.2602
[11] Aparacio, J.M., Perez, C., del Val, J.A., Gigosos, M.A., de la Rosa, M.I. and Mar, S. (1998) Measurement of Stark-broadening and shift parameters of several Ar I lines. Journal of Physics B, 31, 4909-4918. doi:10.1088/0953-4075/31/22/004
[12] Bakshi, V. and Kearney, R.J. (1989) Measurement of Stark width of some Ar I transitions in a d.c. argon plasma jet at atmospheric pressure. Journal of Quantitative Spec troscopy and Radiative Transfer, 42, 405-413. doi:10.1016/0022-4073(89)90008-3
[13] Shojin, G.V., Demura, A.V. and Lisitsa, V.S. (1973) Theory of Stark broadening of hydrogen lines in plasma. Soviet Physics—JETP, 37, 1057-1065.
[14] Griem, H.R. (1964) Plasma spectroscopy. McGrow-Hill, Inc., New York.
[15] Griem, H.R. (1974) Spectral line broadening by plasmas. Academic Press, New York.
[16] Kunze, H.J. (2009) Introduction to plasma spectroscopy. Springer Series on Atomic, Optical and Plasma Physics, Springer, Berlin.
[17] Konjevic, N., Lesage, A., Fuhr, J.R. and Wiese, W.L. (2002) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms. Journal of Physical and Chemical Reference Data, 31, 819-927.
[18] Dimitrijevic, M.S. and Sahal-Brechot, S. (1999) On the stark broadening of neutral zinc spectral lines, Astrono mical Observatory, Belgrade, 65, 55-58.
[19] Konjevic, N., Dimitrijevic, M.S. and Wiese, W.L. (1984) Experimental Stark widths and shifts for spectral lines of neutral atoms: A critical review of selected data for the period 1976 to 1982. Journal of Physical and Chemical Reference Data, 13, 619-647. doi:10.1063/1.555715
[20] El Sherbini, A.M., Hegazy, H. and El Sherbini, Th.M., (2006) Measurement of electron density utilizing the Hα line from laser produced plasma in air. Spectrochimica Acta Part B, 61, 532-539. doi:10.1016/j.sab.2006.03.014
[21] El Sherbini, A.M., Aboulfotouh, A.M., Rashid, F.F., Al lam, S.H., El Dakrouri, A. and El Sherbini, Th.M. (2012) Observed enhancement in LIBS signals fromnano vs bulk ZnO targets: Comparative study of plasma parameters. World Journal of Nano Science and Engineering, 2, 181-188.
[22] El Sherbini, A.M., El Sherbini, Th.M., Hegazy, H., Cristoforetti, G., Legnaioli, S., Palleschi, V., Pardini, L., Salvetti, A. and Tognoni, E. (2005) Evaluation of self-absorption coefficients of aluminum emission lines in laser induced breakdown spectroscopy measurements. Spectrochimica Acta Part B, 60, 1573-1579. doi:10.1016/j.sab.2005.10.011
[23] El Sherbini, A.M. and Al Aamer, A.A.S. (2012) Development of a simple software program used for evaluation of plasma electron density in LIBS experiments via spectral line shape analysis. Journal of Signal and Information Processing, 3, 502-515. doi:10.4236/jsip.2012.34063

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.