Storage Proteins and Trypsin Inhibitors of an Underutilized Legume, Mucuna: Variability and Their Stability during Germination


The proteins and trypsin inhibitors were isolated from the seeds of different varieties/accessions of an underutilized legume, Mucuna. The crude protein content of all the germplasms of Mucuna is varied from 15% - 26%, showed little variation and contain higher crude protein when compared with other Mucuna species reported earlier and the pulse crops commonly consumed in India. The seeds of all the varieties of Mucuna exhibited trypsin inhibitor activity. The trypsin inhibitor activity varied from 11 - 14 TIA/mg of protein. Not much variation was observed in trypsin inhibitory activities in soaked seeds compared to dry seeds. Germination of Mucuna pruriens has been carried out and the change in the protein content and trypsin inhibitors were monitored. The protein content of the endosperm increased up to 72 hrs of germination and then decreased. The trypsin inhibitory activity decreased with increase in germination time. The trypsin inhibitor activity was decreased from 14.81 TIA/mg to 2.62 TIA/mg (82% reduction in the trypsin inhibitor activity) after 144 hrs germination.

Share and Cite:

K. Chandrashekharaiah, "Storage Proteins and Trypsin Inhibitors of an Underutilized Legume, Mucuna: Variability and Their Stability during Germination," American Journal of Plant Sciences, Vol. 4 No. 4, 2013, pp. 910-916. doi: 10.4236/ajps.2013.44112.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O. Malomo, O. A. B. Ogunmoyela and S. O. Oluwajoba, “Effect of Sprouting on Trypsin Inhibitor of Cowpea (Vigna unguiculata),” Journal of Toxicology and Environmental Health Sciences, Vol. 3, No. 5, 2011, pp. 139-141.
[2] E. Lorensen, R. Prevosto and K. Wilson, “The Appearance of New Active Forms of Trypsin Inhibitor in Germinating Mung Bean (Vigna radiata) Seeds,” Plant Physiology, Vol. 68, No. 1, 1981, pp. 88-92. doi:10.1104/pp.68.1.88
[3] M. L. Kakade and R. J. Evans, “Effect of Soaking and Germinating on the Nutritive Value of Navy Beans,” Journal of Food Sciences, Vol. 31, No. 5, 1966, pp. 781- 786. doi:10.1111/j.1365-2621.1966.tb01941.x
[4] R. P. Bates, F. W. Knapp and P. E. Araujo, “Protein Quality of Green Mature, Dry Growth Promoting Quality of Dietary Protein,” Journal of Food Science, Vol. 42, No. 1, 1977, pp. 271-272.
[5] G. Subbulakshmi, G. K. Kumar and L. V. Venkataraman, “Effect of Germination on the Carbohydrates, Proteins, Trypsin Inhibitor, Amylase Inhibitor and Haemagglutinin in Horse Gram and Moth Bean,” Nutrition Report International, Vol. 13, No. 1, 1976, pp. 19-24.
[6] K. O. Adebowale and O. S. Lawal, “Functional Properties and Retrogradation Behavior of Native and Chemically Modified Starch of Mucuna Bean (Mucuna pruriens),” Journal of Science of Food and Agriculture, Vol. 83, No. 15, 2003, pp. 1541-1546. doi:10.1002/jsfa.1569
[7] N. Rajaram and K. Janardhanan, “The Biochemical Composition and Nutritional Potential of the Tribal Pulse Mucuna gigantea Wild DC,” Plant Foods for Human Nutrition, Vol. 41, No. 1, 1991, pp. 45-52. doi:10.1007/BF02196381
[8] R. M. Josephine and K. Janardhanan, “Studies on Chemical Composition and Antinutritional Factors in Three Germplasm Seed Materials of the Tribal Pulse Mucuna pruriens (L.) DC,” Food Chemistry, Vol. 43, No. 1, 1992, pp. 13-18. doi:10.1016/0308-8146(92)90235-T
[9] I. E. Liener and M. L. Kakade, “Proteinase Inhibitors,” In: I. E. Liener, Ed., The Toxic Constituents of Plant Food Stuffs, 2nd Edition, Academy Press, New York, 1980, pp. 7-71.
[10] N. R. Reddy, M. D. Pierson, S. K. Sathe and D. K. Salunkhe, “Dry Bean Tannin: A Review of Nutritional Implication,” Journal of the American Oil Chemists Society, Vol. 62, No. 3, 1985, pp. 451-549. doi:10.1007/BF02542329
[11] K. C. Chang and R. L. Harrold, “Changes in Selected Biochemical Components, in Vitro Protein Digestibility and Amino Acids in Two Bean Cultivars during Germination,” Journal of Food Science, Vol. 53, No. 3, 1988, pp. 783-787. doi:10.1111/j.1365-2621.1988.tb08955.x
[12] C. Vidal-Valverde and J. Frias, “Changes in Carbohydrates during Germination of Lentils,” Zeitschrift fur Lebensmittel Untersuchung und Forschung, Vol. 194, No. 5, 1992, pp. 461-464. doi:10.1007/BF01197729
[13] L. R. Wetter, “Some Properties of Lipase Present in Germinating Rape Seeds,” Journal of the American Oil Chemists Society, Vol. 34, No. 2, 1957, pp. 66-69. doi:10.1007/BF02638019
[14] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[15] M. L. Kakade, N. R. Simons and I. E. Liener, “The Evaluation of Natural vs. Synthetic Substrates for Measuring the Antitryptic Activity of Soybean Samples,” Cereal Chemistry, Vol. 46, No. 5, 1969, pp. 518-526.
[16] M. L. Kakade, N. R. Simons and I. E. Liener, “The Molecular Weight of Bowman and Birk Soybean Protease Inhibitor,” Biochimica et Biophysica Acta, Vol. 200, No. 1, 1969, pp. 168-169.
[17] B. J. Davis and L. Ornstein, “Disc Electrophoresis 1. Background and Theory,” Annals of the New York Academy of Sciences, Vol. 121, 1964, pp. 321-349.
[18] F. Moreira, “Visualisation of Proteinase Inhibitors in SDS Poyacrylamide Gels,” Analytical Biochemistry, Vol. 84, No. 1, 1978, pp. 296-303. doi:10.1016/0003-2697(78)90512-2
[19] G. E. A. Costa, K. S. Queiroz-Monici, S. M. P. M. Reis and A. C. Oliveira, “Chemical Composition, Dietary Fibre and Resistant Starch Contents of Raw and Cooked Pea, Common Bean, Chickpea and Lentil Legumes,” Journal of Food Chemistry, Vol. 94, No. 3, 2006, pp. 327-330. doi:10.1016/j.foodchem.2004.11.020
[20] S. Kumar, G. K. Singh, R. Kumar, N. K. Bhatia and C. P. Awasthi, “Variation in Quality Traits of Pigeon Pea (Cajanus cajan L. Mill sp.) Varieties,” Journal of Food Science and Technology, Vol. 28, 1991, pp. 174-178.
[21] M. A. Mwasaru, K. Muhammad, J. Bakar, B. Yaakob and C. Man, “Effects of Isolation Technique and Conditions on the Extractability, Physicochemical and Functional Properties of Pigeonpea (Cajanus cajan) and Cowpea (Vigna unguiculata) Protein Isolates. I. Physicochemical Properties,” Food Chemistry, Vol. 67, No. 4, 1999, pp. 435-444. doi:10.1016/S0308-8146(99)00150-8
[22] S. K. Sathe and D. K. Salunkhe, “Technology of Removal of Unwanted Components of Dry Beans,” CRC Critical Reviews in Food Science and Nutrition, Vol. 21, No. 3, 1984, pp. 263-287. doi:10.1080/10408398409527402
[23] M. Pugalenthi, V. Vadivel and P. Siddhuraju, “Alternative Food/Feed Perspectives of an Underutilized Legume Mucuna pruriens var. Utilis—A Review,” Plant Foods for Human Nutrition, Vol. 60, No. 4, 2005, pp. 201-218. doi:10.1007/s11130-005-8620-4
[24] J. B. Mugendi, E. N. M. Njagi, E. N. Kuria, M. A. Mwasaru, J. G. Mureithi and Z. Apostolides, “Effects of Processing Technique on the Nutritional Composition and Anti-Nutrient Content of Mucuna Bean (Mucuna pruriens L.),” African Journal of Food Science, Vol. 4, No. 4, 2010, pp. 156-166.
[25] C. Smith, W. V. Megen, L. Twaalfhoven and C. Hitchcock, “The Determination of Trypsin Inhibitor Levels in Foodstuffs,” Journal of the Science of Food and Agriculture, Vol. 31, No. 4, 1980, pp. 321-350. doi:10.1002/jsfa.2740310403
[26] H. P. S. Makkar, K. Becker, H. Abel and E. Pawelzik, “Nutrient Contents, Rumen Protein Degradability and Antinutritional Factors in Some Colour and White-Flowering Cultivars of Vicia faba Beans,” Journal of the Science of Food and Agriculture, Vol. 75, No. 4, 1997, pp. 511-520. doi:10.1002/(SICI)1097-0010(199712)75:4<511::AID-JSFA907>3.0.CO;2-M
[27] S. K. Sathe, S. S. Desphande, N. R. Reddy, D. E. Goll and D. K. Salunkhe, “Effect of Germination on Proteins, Raffinose Oligosaccharides and Antinutritional Factors in Great Northern Beans (Phaseolus vulgaris L),” Journal of Food Science, Vol. 48, No. 6, 1983, pp. 1796-1800. doi:10.1111/j.1365-2621.1983.tb05087.x
[28] A. D. Ologhobo and B. L. Fetuga, “Trypsin Inhibitory Activity in Some Lima Bean Varieties as Affected, by Different Processing Method,” Nutrition Reports International, Vol. 27, No. 1, 1983, pp. 41-49.
[29] A. E. Mubarak, “Nutritional Composition and Antinutritional Factors of Mung Bean Seeds (Phaseolus aureus) as Affected by Some Home Traditional Processes,” Food Chemistry, Vol. 89, No. 4, 2005, pp. 489-495. doi:10.1016/j.foodchem.2004.01.007
[30] A. R. El-Mandy, Y. G. Moharam and O. R. Abou- Samaha, “Influence of Germination on Nutritional Quality of Lentil Seeds,” Zeitschrift für Lebensmittel-Untersuchung und Forschung, Vol. 181, No. 4, 1983, pp. 318- 320.
[31] J. H. Frias, C. Diaz-Pollan, C. L. Hedley and C. Vidal- Valverde, “Evolution of Trypsin Inhibitor Activity during Germination of Lentils,” Journal of Agricultural and Food Chemistry, Vol. 43, No. 8, 1995, pp. 2231-2234. doi:10.1021/jf00056a049
[32] C. Vidal-Valverde, J. H. Frias, I. Estrella, M. J. Gorospe, R. Ruiz and J. Bacon, “Effect of Processing on Some Antinutritional Factors of Lentils,” Journal of Agricultural and Food Chemistry, Vol. 42, No. 10, 1994, pp. 2291-2295. doi:10.1021/jf00046a039
[33] A. Torres, J. Frias, M. Granito and C. Vidal-Valverde, “Germinated Cajanus cajan Seeds as Ingredient in Pasta Products: Chemical and Biological and Sensory Evaluation,” Food Chemistry, Vol. 101, No. 1, 2007, pp. 202- 211. doi:10.1016/j.foodchem.2006.01.018
[34] R. Alonso, E. A. Aguirre and F. Marzo, “Effect of Extrusion and Traditional Processing Methods, on Antinutritionals and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans,” Food Chemistry, Vol. 68, No. 2, 2000, pp. 159-165. doi:10.1016/S0308-8146(99)00169-7

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.