Characteristics of Root Caps in Four Root Types of Avicennia marina (Forsk.) Vierh.


The anatomy of the root caps in four root types of Avicennia marina were studied using conventional histological techniques by Ligth Microscopy (LM) in order to relate their development and structure of their function as environmental adaptation in mangrove’s root and to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally. The result reveals that root caps consisted of two regions, i.e., central columella or statenchyma and peripheral regions. The columella cells (statocyte) are in the form of oval to rectangular. We also found that all root with marked gravitropism have statoliths that settle along different walls of that statocyte. Caps vary in form and size within root system of A. marina. The most striking feature of the root is the distinct and extensive root cap with quite long files of cells. From its shape, structure, and location, it seems clear that the root caps protects the cells under it from abrasion and assists the root in penetrating the soil.

Share and Cite:

H. Purnobasuki, "Characteristics of Root Caps in Four Root Types of Avicennia marina (Forsk.) Vierh.," American Journal of Plant Sciences, Vol. 4 No. 4, 2013, pp. 853-858. doi: 10.4236/ajps.2013.44105.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. J. Chapman, “Mangrove Vegetation,” J. Cramer, Vaduz, 1976.
[2] P. B. Tomlinson, “The Botany of Mangroves,” Cambridge University Press, New York, 1986, 440 p.
[3] H. Purnobasuki and M. Suzuki, “Functional Anatomy of Air Conducting Network on the Pneumatophores of a Mangrove Plant, Avicennia marina (Forsk.) Vierh.,” Asian Journal of Plant Sciences, Vol. 4, No. 4, 2005, pp. 334- 347. doi:10.3923/ajps.2005.334.347
[4] P. W. Barlow, “The Root Cap: Cell Dynamics, Cell Differentiation, and Cap Function,” Journal of Plant Growth Regulation, Vol. 21, No. 4, 2003, pp. 261-286. doi:10.1007/s00344-002-0034-z
[5] G. T. S. Baylis, “Root System of the New Zealand Mangrove,” Transactions of the Royal Society of New Zealand, Vol. 78, 1950, pp. 509-514.
[6] H. Purnobasuki and M. Suzuki, “Root System Architecture and Gravity Perception of a Mangrove Plant Sonneratia alba J. Smith,” Journal of Plant Biology, Vol. 4, No. 3, 2004, pp. 236-243. doi:10.1007/BF03030514
[7] I. Nagelkerken, A. M. De Schryver, M. C. Verweij, F. Dahdouh-Guebas, G. van der Velde and N. Koedam, “Differences in Root Architecture Influence Attraction of Fishes to Mangroves: A Field Experiment Mimicking Roots Different Length, Orientation, and Complexity,” Journal of Experimental Marine Biology and Ecology, Vol. 369, No. 1, 2010, pp. 27-34. doi:10.1016/j.jembe.2010.10.002
[8] A. E. Ashford and W. G. Allaway, “There Is a Continuum of Gas Space in Young Plants of Avicennia marina,” Hydrobiologia, Vol. 295, No. 1-3, 1995, pp. 5-11. doi:10.1007/BF00029105
[9] H. Purnobasuki and M. Suzuki, “Aerenchyma Tissue Development and Gas-Pathway Structure in Root of Avicennia marina (Forsk.) Vierh,” Journal of Plant Research, 118, No. 4, 2005, pp. 285-294. doi:10.1007/s10265-005-0221-7
[10] U. Videmsek, B. Turk and D. Vodnik, “Root Aerenchyma—Formation and Function,” Acta agriculturae Slovenica, Vol. 87, 2006, pp. 445-453.
[11] F. Dahdouh-Guebas, R. De Bondt, P. D. Abeysinghe, J. G. Kairo, S. Cannicci, L. Triest and N. Koedam, “Comparative Study of the Disjunct Zonation Pattern of the Grey Mangrove Avicennia marina (Forsk.) Vierh. in Gazi Bay (Kenya),” Bulletin of Marine Science, Vol. 74, No. 2, 2004, pp. 237-252.
[12] L. S. Evans, Y. Okawa and D. G. Searcy, “Anatomy and Morphology of Red Mangrove (Rhizopora mangle) Plants in Relation to Internal Airflow,” Journal of The Torrey Botanical Society, Vol. 132, No. 4, 2005, pp. 537-550. doi:10.3159/1095-5674(2005)132[537:AAMORM]2.0.CO;2
[13] L. S. Evans, M. F. de Leon and E. Sai, “Anatomy and Morphology of Rhizophora stylosa in Relation to Internal Airflow and Attim’s Plant Architecture,” Journal of The Torrey Botanical Society, Vol. 135, No. 1, 2008, pp. 114- 125. doi:10.3159/07-RA-027R.1
[14] W. Finney, “Comparative Growth and Propagule Viability of Louisiana-Harvested Black Mangrove, Avicennia germinans,” Thesis, Faculty of Nicholls State University, 2011.
[15] J. B. Fisher and P. B. Tomlinson, “Tension Wood Fibers Are Related to Gravitropic Movement of Red Mangrove (Rhizophora mangle) Seedling,” Journal of Plant Research, Vol. 115, No. 1117, 2002, pp. 39-45. doi:10.1007/s102650200006
[16] J. A. MacDonald, T. Glover and J. S. Weis, “The Impact of Mangrove Prop-Root Epibionts on Juvenile Reef Fishes: A Field Experiment Using Artificial Roots and Epifauna,” Estuaries and Coasts, Vol. 31, No. 5, 2008, pp. 981-993. doi:10.1007/s12237-008-9083-2
[17] E. Cocheret de la Morinière, I. Nagelkerken, H. van der Meij and G. van der Velde, “What Attracts Juvenile Coral Reef Fish to Mangroves: Habitat Complexity or Shade?” Marine Biology, Vol. 144, No. 1, 2004, pp. 139-145. doi:10.1007/s00227-003-1167-8
[18] M. C. Verweij, I. Nagelkerken, D. de Graaff, M. Peeters, E. J. Bakker and G. van der Velde, “Structure, Food and Shade Attract Juvenile Coral Reef Fish to Mangrove and Seagrass Habitats: A Field Experiment,” Marine Ecology Progress Series, Vol. 306, 2006, pp. 257-268. doi:10.3354/meps306257
[19] J. A. MacDonald, S. Shahrestani and J. S. Weis, “Behavior and Space Utilization of Two Common Fishes within Caribbean Mangroves: Implications for the Protective Function of Mangrove Habitats,” Estuarine, Coastal and Shelf Science, Vol. 84, No. 2, 2009, pp. 195-201. doi:10.1016/j.ecss.2009.06.010
[20] W. G. Allaway, M. Curran, L. M. Hollington, M. C. Ricketts and N. J. Skelton, “Gas Space and Oxygen Exchange in Roots of Avicennia marina (Forsk.) Vierh. Var. Australasica (Walp.) Moldenke ex N.C. Duke, the Grey Mangrove,” Wetlands Ecology and Management, Vol. 9, No. 3, 2008, pp. 211-218.
[21] K. Kitaya, K. Yabuki, M. Kiyota, A. Tani, T. Hirano and I. Aiga, “Gas Exchange and Oxygen Concentration in Pneumatophores and Prop Roots of Four Mangrove Species,” Trees, Vol. 16, No. 2-3, 2002, pp. 155-158.
[22] Y. Okimoto, A. Nose, Y. Katsusa, Y. Tateda, A. Agarie and K. Ikeda, “Gas Exchange Analysis for Estimating Net CO2 Fixation Capacity of Mangrove (Rhizophira stylosa) Forest in the Mouth of River Fukido, Ishigaki Island Japan,” Plant Production Science, Vol. 10, No. 3, 2007, pp. 303-313. doi:10.1626/pps.10.303
[23] P. F. Scholander, L. Van Dam and S. Scholander, “Gas Exchange in the Roots of Mangroves,” American Journal of Botany, Vol. 42, No. 1, 1955, pp. 92-98. doi:10.2307/2438597
[24] S. Koi and M. Kato, “Comparative Developmental Anatomy of the Root in Three Species of Cladopus (Podostemaceae),” Annals of Botany, Vol. 91, No. 7, 2003, pp. 927-937. doi:10.1093/aob/mcg092
[25] M. Ota, R. Imaichi and M. Kato, “Developmental Morphology of the Thalloid Hydrobryum japonicum (Podostemaceae),” American Journal of Botany, Vol. 88, No. 3, 2001, pp. 382-390. doi:10.2307/2657101
[26] Y. Hiyama, I. Tsukamoto, R. Imaichi and M. Kato, “Developmental Anatomy and Branching of Roots of Four Zeylanidium species (Podostemaceae), with Implications for Evolution of Foliose Roots,” Annals of Botany, Vol. 90, No. 6, 2002, pp. 735-744. doi:10.1093/aob/mcf259
[27] R. Rutishauser and K. A. Huber, “The Developmental Morphology of Indotristicha ramosissima (Podostemaceae, Tristichoideae),” Plant Systematics and Evolution, Vol. 178, No. 2-3, 1991, pp. 195-223.
[28] D. A. Johansen, “Plant Microtechnique,” McGraw-Hill Book Co. Inc., New York, 1990.
[29] T. P. O’Brian and M. E. Cully, “The Study of Plant Structures Principle and Selected Methods,” Termacarphi Pty. Ltd., Melbourne, 1981.
[30] J. B. Sanderson, “Biological Microtechnique,” BIOS Scientific Pub., Oxford, 1994.
[31] A. G. Bengough, M. Iijima and P. W. Barlow, “Image Analysis of Maize Root Caps-Estimating Cell Number from 2-D Longitudinal Sections,” Annals of Botany, Vol. 87, No. 5, 2001, pp. 693-698. doi:10.1006/anbo.2001.1392
[32] C. Arnaud, C. Bonnot, T. Desnos and L. Nussaume, “The Root Cap at the Forefront,” Comptes Rendus Biologies, Vol. 333, No. 4, 2010, pp. 335-343. doi:10.1016/j.crvi.2010.01.011
[33] H. von Guttenberg, “Die Ntwicklung der Wurzel,” Phytomorph, Vol. 14, 1964, pp. 265-287.
[34] P. W. Barlow, H. B. Luck and J. Luck, “Autoreproductive Cells and Plant Meristem Construction: The Case of the Tomato Cap Meristem,” Protoplasma, Vol. 215, No. 1-4, 2001, pp. 50-63. doi:10.1007/BF01280303
[35] R. Wayne, M. P. Staves and A. C. Leopold, “The Contribution of the Extracelluler Matrix to Gravisensing in Characean Cells,” Journal of Cell Science, Vol. 101, 1992, pp. 611-623.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.