Ball Milling and Annealing of Co-50 at% W Powders

Abstract

Broadening and height reduction of X-ray diffraction peaks were observed after cold-pressing of unmilled Co-W powder mixture. It seems the effect of cold pressing has slightly reduced the lattice parameter of W from 3.165 to 3.143?. Consequent annealing of unmilled compacts yielded metastable phases. Upon 10 and 20 h ball milling of Co-W powder, no alloying was obtained. Although milling did not yield significant crystal changes in W and Co ground state structures, its effect is evident during subsequent annealing. An eta phase is obtained for the first time from unmilled-annealed Co-W powder mixture in the absence of interstitial elements like carbon, while the milled counterpart yielded the rhombohedral Co7W6-type phase with composition deviated from stoichiometric value.

Share and Cite:

Bolokang, A. , Phasha, M. and Motaung, D. (2013) Ball Milling and Annealing of Co-50 at% W Powders. International Journal of Nonferrous Metallurgy, 2, 41-46. doi: 10.4236/ijnm.2013.22006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Donten and Z. Stojek, “Pulse Electroplating of Rich in-Tungsten Thin Layers of Amorphous Co-W Alloys,” Journal of Applied Electrochemistry, Vol. 26, No. 6, 1996, pp. 665-672. doi:10.1007/BF00253466
[2] D. Z. Grabco, I. A. Dikusar, V. I. Petrenko, E. E. Harea and O. A. Shikimaka, “Micromechanical Properties of Co-W Alloys Electrodeposited under Pulse Conditions,” Surface Engineering of Applied Electrochemistry, Vol. 43, No. 1, 2007, pp. 11-17. doi:10.3103/S1068375507010024
[3] S. S. Grabchikov and A. M. Yaskovich, “Effect of the Structure of Amorphous Electrodeposited Ni-W and Ni Co-W Alloys on Their Crystallization,” Russian Metal lurgy, Vol. 2006, No. 1, 2006, pp. 56-60. doi:10.1134/S0036029506010101
[4] Z. Guo, X. Zhu, D. Zhai and X. Yang, “Electrodeposition of Ni-W Amorphous Alloy and Ni-W-SiC Composite Deposits,” Journal of Materials Science and Technology, Vol. 16, No. 2, 2000, pp. 323-326.
[5] C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler and R. Spolenak, “A Combinational Study on the Influence of Elemental Composition and Heat Treatment on the Phase Composition, Microstructure and Mechanical Properties of Ni-W Alloy Thin Films,” Acta Materialia, Vol. 59, No. 1, 2011, pp. 386-399. doi:10.1016/j.actamat.2010.09.045
[6] B. Yang, G. Qin, W. Pei, Y. Ren, N. Xiao and X. Zhao, “Abnormal Saturation Magnetization Dependency on W Content for Co-W Thin Films,” Acta Metalligica Sinica, Vol. 23, No. 1, 2010, pp. 8-12.
[7] M. Mulukutla, V. K. Kommineni and S. P. Harimkar, “Pulsed Electrodeposition of Co-W Amorphous and Crystalline Coatings,” Applied Surface Science, Vol. 258, No. 7, 2012, pp. 2886-2893. doi:10.1016/j.apsusc.2011.11.002
[8] K. Wikiel and J. Osteryoung, “Voltammetric Study of Plating Baths for Electrodeposition of Co-W Amorphous Alloys,” Journal of Applied Electrochemistry, Vol. 22, No. 6, 1992, pp. 506-511. doi:10.1007/BF01024089
[9] S. Bolokang, C. Bangayayi and M. Phasha, “Effect of C and Milling Parameters on the Synthesis of WC Powders by Mechanical Alloying,” International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 2, 2010, pp. 211-216. doi:10.1016/j.ijrmhm.2009.09.006
[10] K. F. Kobayashi and H. Kawaguchi, “Amorphization of Al-Cr Atomized Powder by Mechanical Alloying,” Materials Science and Engineering A, Vol. 181-182, 1994, pp. 1253-1257. doi:10.1016/0921-5093(94)90841-9
[11] A. Karin, A. Bonefacic and D. Duzevic, “Phase Trans formation in Pressed Cobalt Powder,” Journal of Physics F: Metal Physics, Vol. 14, No. 11, 1984, pp. 2781-2786. doi:10.1088/0305-4608/14/11/030
[12] A. S. Bolokang, M. J. Phasha, D. E. Motaung and S. Bhero, “ Effect of Mechanical Milling and Cold Pressing on Co Powder,” Journal of Metallurgy, Vol. 2012, 2012, Article ID: 290873. doi:10.1155/2012/290873
[13] S. D. De la Torre, K. N. Ishihara and P. H. Shingu, “Synthesis of SnTe by Repeated Cold-Pressing,” Materials Science and Engineering A, Vol. 266, No. 1-2, 1999, pp. 37-43. doi:10.1016/S0921-5093(99)00043-X
[14] A. S. Bolokang, M. J. Phasha, D. E. Motaung and S. Bhero, “Metastable Phases in the Co-W System Traced from Elemental Co and W Powders,” International Journal of Refractory Metals and Hard Materials, Vol. 31, 2012, pp. 274-280. doi:10.1016/j.ijrmhm.2011.12.012
[15] A. S. Bolokang, M. J. Phasha, K. Maweja and S. Bhero, “Structural Characterization of Mechanically Milled and Annealed Tungsten Powder,” Powder Technology, Vol. 225, 2012, pp. 27-31. doi:10.1016/j.powtec.2012.03.028
[16] K. Maweja, M. J. Phasha and L. J. Choenyane, “Thermal Stability and Magnetic Saturation of Annealed Nickel Tungsten and Tungsten Milled Powders,” International Journal of Refractory Metals and Hard Materials, Vol. 30, No. 1, 2012, pp. 78-84. doi:10.1016/j.ijrmhm.2011.07.005
[17] C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler and R. Spolenak, “A Combinational Study on the Influence of Elemental Composition And Heat Treatment on the Phase Composition, Microstructure And Mechanical Properties of Ni-W Alloy Thin Films,” ActaMaterialia, Vol. 59, No. 1, 2011, pp. 386-399. doi:10.1016/j.actamat.2010.09.045
[18] D. Oleszak, V. K. Portnoy and H. Matyja, “Formation of Metastable Phases in Ni-43.5 at % Mo Powder Mixtures during Mechanical Alloying and after Heat Treatment,” Philosophical Magazine, Vol. 76, No. 4, 1997, pp. 639-649. doi:10.1080/01418639708241130
[19] N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, M. Selleby and B. Sundman, “Thermal Expansion and Com pressibility of Co6W6C,” Journal of Alloys and Com pounds, Vol. 285, No. 1-2, 1999, pp. 242-245. doi:10.1016/S0925-8388(98)00932-3
[20] P. Bracconi and L. C. Dufour, “Investigation of Cobalt (II)-Tungsten (VI)-Oxide Reduction in Hydrogen,” Metallurgical Transaction A, Vol. 7, No. 3, 1976, pp. 321-327.
[21] R, German, “Powder Metallurgy Science,” Metal Powder Industry Federation, Princeton, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.