Quantum process in living cells


Coherent quantum effects have been confirmed for several biological processes. These processes exist in the environment of a warm wet cell where decoherence can be a serious concern. Here we propose a mechanism whereby quantum coherence may extend through the water matrix of a cell. The model is based on coherent waves of established ultrafast energy transfers in water. Computations based on the model are found to agree with several experimental results and numerical and descriptive predictions are presented. We compute wave speed, ~156 km/s, and wavelength, ~9.3 nm, and determine that these waves retain local coherence. Close agreements are found for the dipole moment of water dimers, results of microwave radiation on yeast, and the Kleiber law of metabolic rates. The theory requires that a spherical cell must have a minimum diameter of ~20 nm to accommodate a standing energy wave. The quantum properties of the modelsuggest that cellular chemistry favors reactions that support perpetuation of the energy waves.

Share and Cite:

Finkel, R. (2013) Quantum process in living cells. Advances in Bioscience and Biotechnology, 4, 543-547. doi: 10.4236/abb.2013.44071.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fröhlich, H. (1968) Long-range coherence and energy storage in biological systems. International Journal of Quantum Chemistry, 2, 641-649. doi:10.1002/qua.560020505
[2] Schrödinger, E. (1944) What is life? Cambridge University Press, Cambridge.
[3] Ball, P. (2011) Physics of life: The dawn of quantum biology. Nature, 474, 272-274. doi:10.1038/474272a
[4] Preoteasa, E.A. and Apostol, M.V. (2006) Puzzles of the living cell on the nanometer scale and coherent collective excitations in some biomembrane structures. Digital Journal of Nanomater Bios, 1, 81-92.
[5] Woutersen, S. and Bakker, H.J. (1999) Resonant intermolecular transfer of vibrational energy in liquid water. Nature, 402, 507-509. doi:10.1038/990058
[6] Jahnke, T., Sann, H., Havermeier, T., Kreidi, K., Stuck, C., Meckel, M., Schöffler, M., Neumann, N., Wallauer, R., Voss, S., Czasch, A., Jagutzki, O., Malakzadeh, A., Afaneh, F., Weber, F., Schmidt-Böcking, H. and Dörner, R. (2010) Ultrafast energy transfer between water molecules. Nature Physics, 6, 139-142. doi:10.1038/nphys1498
[7] Finkel, R.W. (2006) Model for Energy Oscillations in Cells, Journal of Theoretical Biology, 238, 286-289. doi:10.1016/j.jtbi.2005.05.002
[8] Chaplin, M. (2012) Water Structure and Science. http://www.lsbu.ac.uk/water/molecule.html
[9] Lock, A.J., Woutersen, S. and Bakker, H.J. (2001) Ultrafast energy equilibration in hydrogen-bonded liquids. Journal of Physical Chemistry A, 105, 1238. doi:10.1021/jp003158e
[10] Schlosshauer, M.A. (2007) Decoherence and the quantum-to-classical transition. Springer, New York.
[11] Salari, V., Tuszynski, J., Rahnama, M. and Bernroider, G. (2011) Plausibility of quantum coherent states in biological systems. Journal of Physics: Conference Series, 306, 012075. doi:10.1088/1742-6596/306/1/012075
[12] Gregory, J.K., Clary, D.C., Liu, K., Brown, M.G. and Saykally, R.J. (1997) The water dipole moment in water clusters. Science, 275, 814-817. doi:10.1126/science.275.5301.814
[13] Grundler, W. and Keilmann, F. (1983) Sharp resonances in yeast growth prove non-thermal sensitivity to microwaves. Physical Review Letters, 51, 1214-1216. doi:10.1103/PhysRevLett.51.1214
[14] Grundler, W., Keilmann, F., Putterlik, V., Strube, D. and Zimmermann, I. (1983) Nonthermal resonant effects of 42 GHz microwaves on the growth of yeast cultures. In: Frölich, H. and Kremer, F., Eds., Coherent Excitations in Biological Systems, Springer, Berlin, 21-37.
[15] Grundler, W. and Kaiser, F. (1992) Experimental evidence for coherent excitations correlated with cell growth. Nanobiology, 1, 163-176.
[16] Shin, H.C., Prager, R., Gomersall, H., Kingsbury, N., Treece, G. and Gee, A. (2010) Estimation of average speed of sound using de-convolution of medical ultrasound data. Ultrasound Medical Biology, 36, 623-636.
[17] Chaplin, M. (2012) Absorption coefficients for water. http://www.lsbu.ac.uk/water/vibrat.html
[18] Kleiber, M. (1932) Body size and metabolism. Hilgardia, 6, 315-351.
[19] Kleiber, M. (1961) The fire of life. Wiley, New York.
[20] West, G.B., Brown, J.H. and Enquist, B.J. (1977) A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. doi:10.1126/science.276.5309.122
[21] Banavar, J.R., Damuth, J., Maritan, A. and Rinaldo, A. (2002) Supply-demand balance and metabolic scaling. Proceedings of National Academy Science of the USA, 99, 10506-10509. doi:10.1073/pnas.162216899
[22] Agutter, P.S. and Wheatley, D.N. (2004) Metabolic scaling: Consensus or controversy? Theoretical Biology and Medical Modelling, 1, 13. doi:10.1186/1742-4682-1-13
[23] Patel, A.D. (2000) Quantum algorithms and the genetic code. http://arXiv.org/abs/quant-ph/0002037
[24] Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, New York, 212-219.
[25] Nanjundiah, V. (2000) The smallest form of life yet? Journal of Biosciences, 25, 9-10. doi:10.1007/BF02985175

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.