Role of natural killer (NK) cells during pregnancy: A review

Abstract

The homeostasis is maintained by the immune system which is constituted a network of organs, cells and molecules that act to combating the assaults affecting the body. The immune function has been conceptually divided into innate immunity and acquired immunity. Among the effector cells of innate immunity are the natural killer cells (NK), they play an important role in the reproductive immunology in the establishment and maintenance of pregnancy and fetus. The study of the biological mechanisms involved in the maintenance of pregnancy contributes to increase knowledge about immune tolerance. The way in which the immune system is modulated, and the study of the recognition systems maternal innate and adaptive occurring during pregnancy, allow to understand the survival of the fetus. The aim of this review was to present the main functions of NK cells and describe their role in the process of trophoblastic invasion in the deployment process, in the maternal-fetal interaction and development of the fetus. The knowledge of the precise role of NK cells is necessary, because these cells may be responsible for reactions which lead to embryonic and fetal loss during the organogenesis process.

Share and Cite:

Rodrigues, M. , Favaron, P. , Dombrowski, J. , Souza, R. and Miglino, M. (2013) Role of natural killer (NK) cells during pregnancy: A review. Open Journal of Animal Sciences, 3, 138-144. doi: 10.4236/ojas.2013.32021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Somigliana, E., Viganò, P. and Vignali, M. (1999) Endometriosis and unexplained recurrent spontaneous abortion: Pathological states resulting from aberrant modulation of natural killer cell function? Human Reproduction Update, 5, 40-51. doi:10.1093/humupd/5.1.40
[2] Raí, R., Sacks, G. and Trew, G. (2005) Natural killer cells and reprodutive failure: Theory, practice and prejudice. Human Reproduction, 20, 1123-1126. doi:10.1093/humrep/deh804
[3] Zhang, J., Croy, B.A. and Tian, Z. (2005) Uterine natural killer cells: Their choices, their missions. Cellular & Molecular Immunology, 2, 123-139.
[4] Pijnenborg, R., Vercruysse, L. and Hanssens, M. (2006) The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta, 27, 939-958. doi:10.1016/j.placenta.2005.12.006
[5] Croy, B.A., Yu, Z.M. and King, G.J. (1994) A review of the natural killer cell lineage in the uterus of the mouse and of the pig. Journal of Animal Science, 72, 9-15.
[6] Croy, B.A., Reed, N., Malashenko, B.A., Kim, K. and Kown, B.S. (1991) Demonstration of YAC target cell lysis by murine granulated metrial gland cells. Cellular Immunology, 133, 116-126. doi:10.1016/0008-8749(91)90184-D
[7] Abbas, A.K. and Lichtman, A.H. (2005) Imunologia celular E molecular. 5th Edition, Elsevier, Amsterdam.
[8] Lanier, L.L. (2001) On guard-activating NK cell receptors. Nature Immunology, 2, 23-27. doi:10.1038/83130
[9] Quenby, S. (2006) Uterine natural killer cells, implanttation failure and recurrent miscarriage. Reproductive Biomedicine Online, 13, 24-28. doi:10.1016/S1472-6483(10)62012-3
[10] Fettback, P.B.T., Domingues, T.S., Hassun Filho, P.A., Motta, E.L.A., Serafini, P.C. and Baracat, E.C. (2009) Endometrial natural killer cells: What are they? What do they do? What do we need to know? Femina, 37, 373378.
[11] Lash, G.E. and Bulmer, J.N. (2011) Do uterine natural killer (uNK) cells contribute to female reproductive disorders? Journal of Reproductive Immunology, 88, 156-164. doi:10.1016/j.jri.2011.01.003
[12] O’Connor, G.M., Hart, O.M. and Gardiner, C.M. (2005) Putting the natural killer cell in its place. Immunology, 117, 1-10. doi:10.1111/j.1365-2567.2005.02256.x
[13] Biassoni, R., Cantoni, C., Falco, M., Pende, D., Millo, R., Moretta, L., Bottino, C. and Moretta, A. (2000) Human natural killer cell activating receptors. Molecular Immunology, 37, 1015-1024. doi:10.1016/S0161-5890(01)00018-9
[14] Kelley, J., Walter, L. and Trowsdale, J. (2005) Comparative genomics of natural killer. Cellular & Molecular Immunology, 2, 123-129.
[15] Emmer, P.M., Veerhoek, M., Nelen, W.L.D.M., Steegers, E.A.P. and Joosten, I. (1999) Natural killer cell reactivity and HLA-G in recurrent spontaneous abortion. Transplantation Proceedings, 31, 1838-1840. doi:10.1016/S0041-1345(99)00182-7
[16] Pazmany, L., Mandelboin, O., Vales-Gomez, M., Davis, D.M., Becker, T.C., Reyburn, H.T., Seebach, J.D., Hill, J.A. and Strominger, J.L. (1999) Human leucocyte antigen-G and its recognition by natural killer cells. Journal of Reproductive Immunology, 43, 127-137. doi:10.1016/S0165-0378(99)00028-5
[17] Rousseau, P., Paul, P., O’Brien, M., Dausset, J., Carosella, E.D. and Moreau, P. (2000) The X1 box of HLA-G promoter is a target site for RFX and Sp1 factors. Human Immunology, 61, 1132-1137. doi:10.1016/S0198-8859(00)00199-3
[18] Parham, P. (2004) NK cells and trophoblasts: Partners in pregnancy. The Journal of Experimental Medicine, 200, 951-955. doi:10.1084/jem.20041783
[19] Dosiou, C. and Giudice, L.C. (2006) Natural killer cells in pregnancy and recurrent pregnancy loss: Endocrine and immunologic perspectives. Endocrine Reviews, 26, 44-62. doi:10.1210/er.2003-0021
[20] Hunter, H., Hammer, A., Dohr, G. and Hunt J.S. (1998) HLA expression at the maternal-fetal interface. Clinical and Developmental Immunology, 6, 197-204.
[21] Chumbley, G., King, A., Gardner, L., Howlett, S., Holmes, N. and Loke, Y.W. (1994) Generation of an antibody to HLA-G in transgenic mice and demonstration of the tissue reactivity of this antibody. Journal of Reproductive Immunology, 27, 173-186. doi:10.1016/0165-0378(94)90002-7
[22] King, A., Hilby, S.E., Verma, S., Burrows, T., Gardner, L. and Loke, Y.W. (1997) Uterine NK cells and trophoblast HLA class I molecules. American Journal of Reproductive Immunology, 37, 459-462. doi:10.1111/j.1600-0897.1997.tb00260.x
[23] Ghosh, D., Sharkey, A.M., Charnock-Jones, D.S., Dhawan, L., Dhara, S., Smith, S.K. and Sengupta, J. (2000) Expression of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in conceptus and endometrium during implantation in the rhesus monkey. Molecular Human Reproduction, 6, 935-941. doi:10.1093/molehr/6.10.935
[24] Moffett-King, A. (2002) Natural killer cells and pregnancy. Nature Reviews Immunology, 2, 656-663. doi:10.1038/nri886
[25] Arcuri, F., Cintorino, M. and Carducci, A. (2006) Human decidual natural killer cells are a source and target of macrophage migration inhibitory factor. Reproduction, 131, 175-182. doi:10.1530/rep.1.00857
[26] Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T.I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S. and Mandelboim, O. (2006) Decidual NK cell regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 12, 1065-1074. doi:10.1038/nm1452
[27] Zhang, J., Chen, Z., Smith, G.N. and Croy, B.A. (2011) Natural killer cell-triggered vascular transformation: Maternal care before birth? Cellular & Molecular Immunology, 8, 1-11.
[28] Quack, Q.C., Vassiliadou, N., Pudney, J., Anderson, D.J. and Hill, J.A. (2001) Leucocyte activation in the decidua of chromosomally normal and abnormal fetuses from women with recurrent abortion. Human Reproduction, 16, 949-955. doi:10.1093/humrep/16.5.949
[29] Elami-Suzin, M. and Mankuta, D. (2007) Role of natural killer cells in normal pregnancy and recurrent pregnancy loss. Harefuah, 146, 140-144.
[30] Ashkar, A.A. and Croy, B.A. (2001) Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Seminars in Immunology, 13, 235-241. doi:10.1006/smim.2000.0319
[31] Tayade, C., Fang, Y. and Croy, B.A. (2007) A review of gene expression in porcine endometrial lymphocytes, endothelium and trophoblast during pregnancy success and failure. Journal of Reproduction and Development, 53, 455-463. doi:10.1262/jrd.18170
[32] Oh, M.J. and Croy, B.A.A. (2008) A map of relationships between uterine natural killer cells and progesterone receptor expressing cells during mouse pregnancy. Placenta, 29, 317-323. doi:10.1016/j.placenta.2008.01.003
[33] Gogolin-Ewens, J.K., Lee, C.S., Mercer, W.R. and Brandon, M.R. (1989) Site-directed differences in the immune response to the fetus. Immunology, 66, 312-317.
[34] Boyson, J.E., Rybalov, B., Koopman, L.A., Exley, M., Balk, S.P., Racke, F.K., Masch, R., Schatz, F., Brian Wilson, S. and Strominger, J.L. (2002) CD1d and invariant NKT cells at the human maternal-fetal interface. Proceedings of the National Academy of Sciences, 99, 1374113746. doi:10.1073/pnas.162491699
[35] Ashkar, A.A., Black, J.P., Wei, Q., He, H., Liang, L., Head, J.R. and Croy, B.A. (2003) Assessment of requirements for IL 15 and INF regulatory factors in uterine NK cell differentiation and function during pregnancy. Journal of Immunology, 171, 2937-2944.
[36] Guimond, M.J., Wang, B. and Croy, B.A. (1999) Immune competence involving the natural killer linage promotes placental growth. Placenta, 20, 441-450. doi:10.1053/plac.1999.0398
[37] Robson, A., Innes, B.A., Lash, G.E., Robson, S.C. and Bulmer, J.N. (2010) Uterine natural killer cells promote vascular smooth muscle cell dedifferentiation in a vessel culture model. Reproductive Sciences, 17, 324A.
[38] Lash, G.E. (2010) Functional role of uterine natural killer cells in early human pregnancy. Journal of Reproductive Immunology, 31, S87-S92.
[39] Harris, L.K., Robson, A., Lash, G.E., Aplin, J.D., Baker, P.N. and Bulmer, J.N. (2010) Physiological remodelling of the uterine spiral arteries during human pregnancy: Uterine natural killer cells mediate smooth muscle cell disruption. Proceedings of the Physiological Society, 19, C42.
[40] Favaron, P.O., Carter, A.M., Ambrósio, C.E., Morini, A.C., Mess, A.M., Oliveira, M.F. and Miglino, M.A. (2011) Placentation in Sigmodontinae: A rodent taxon native to South America. Reproductive Biology and Endocrinology, 9, 55. doi:10.1186/1477-7827-9-55
[41] Michelon, T., Silveira, J.G., Graudenz, M. and Neumann, L. (2006) Imunologia da gestaÇão. Revista da Associação Médica do Rio Grande do Sul, 50, 145-151.
[42] Christiansen, O.B. (2005) A fresh look at the causes and treatments of recurrent cell receptor gene clusters. PLoS Genetics, 1, 129-139.
[43] Sarafana, S., Coelho, R., Neves, A. and Trindade, J.C. (2007) Aspectos da imunologia da gravidez. Acta Medica Portuguesa, 20, 355-358.
[44] Wilczynsky, J.R. (2005) Th1/Th2 cytokines balance—Yin and yang of reproductive immunology. European Journal of Obstetrics Gynecology and Reproductive Biology, 122, 136-143. doi:10.1016/j.ejogrb.2005.03.008
[45] Tizard, I.R. (2009) Imunidade no feto e no recém nascido, Elsevier, São Paulo.
[46] Davies, C.J., Fisheer, P.J. and Schafler, D.H. (2000) Temporal and regional of major histocompatibility complex class I expression at the bovine uterine/placental interface. Placenta, 21, 194-202. doi:10.1053/plac.1999.0475
[47] Huddleston, H. and Schust, D.J. (2004) Immune interactions at the maternal-fetal interface: A focus on antigen presentation. American Journal of Reproduction, 51, 283289. doi:10.1111/j.1600-0897.2004.00157.x
[48] Morena, M. and Gitlin, J.D. (2004) The immunology of pregnancy. In: Stiehm, E.R., Ochs, H.D. and Winkelstein, J.A., Eds., Immunologic Disorders in Infant & Children, 5th Edition, Elsevier Saunders, Philadelphia, 273-285.
[49] Saito, S., Nakashima, A., Shiozaki, A., Ito, M. and Sasachhi, Y. (2007) What is the role of regulatory T cells in the success of implantation and early pregnancy? Journal Assisted Reproductions and Genetics, 24, 379-386. doi:10.1007/s10815-007-9140-y
[50] Tabiasco, J., Rabot, M., Aguerre-Girr, M., El Costa, H., Berrebi, A., Parant, O., Laskarin, G., Juretic, K., Bensussan, A., Rukavina, D. and Le Bouteiller, P. (2006) Human decidual NK cells: Unique phenotype and functional properties—A review. Placenta, 27, 34-39. doi:10.1016/j.placenta.2006.01.009
[51] Hunt, J.S., Petroff, M.G. and Burnett, T.G. (2000) Uterine leukocytes: Key players in pregnancy. Seminars in Cell & Develop-mental Biology, 11, 127-137. doi:10.1006/scdb.2000.0158
[52] Kovats, S., Main, E.K., Librach, C., Stubblebine, M., Fisher, S.J. and DeMars, R. (1990) A class I antigen, HLAG, expressed in human trophoblasts. Science, 248, 220223. doi:10.1126/science.2326636
[53] Ponte, M., Cantoni, C., Biassoni, R., Tradori-Cappai, A., Bentivoglio, G., Vitale, C., Bertone, S., Moretta, A., Moretta, L. and Mingari, M.C. (1999) Inhibitory receptors sensing HLA-G1 molecules in pregnancy: Deciduaassociated natural killer cells express LIR-1 and CD94/ NKG2A and acquire p49, an HLA-G1-specific receptor. Proceedings of the National Academy of Sciences, 96, 5674-5679. doi:10.1073/pnas.96.10.5674
[54] Loke, Y.W. and King, A. (2000) Decidual natural killer cell interaction with trophoblast: Cytolysis or cytokine production? Biochemical Society Transactions, 28, 196198.
[55] Caumartin, J., Favier, B., Daouya, M., Guillard, C., Moreau, P., Carosella, E.D. and LeMaoult, J. (2007) Trogocytosis-based generation of suppressive NK cells. The EMBO Journal, 26, 1423-1433. doi:10.1038/sj.emboj.7601570
[56] Feger, U., Tolosa, E., Huang, Y.H., Waschbisch, A., Biedermann, T., Melms, A. and Wiendl, H. (2007) HLA-G expression defines a novel regulatory T cell subset present in human peripheral blood and sites of inflammation. Blood, 110, 568-577. doi:10.1182/blood-2006-11-057125
[57] LeMaoult, J., Caumartin, J., Daouya, M., Favier, B., Le Rond, S., Gonzalez, A. and Carosella, E.D. (2007) Immune regulation by pretenders: Cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood, 109, 2040-2048. doi:10.1182/blood-2006-05-024547
[58] Paffaro Jr., V.A., Bizinotto, M.C., Joazeiro, P.P. and Yamada, A.T. (2003) Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta, 24, 479-488. doi:10.1053/plac.2002.0919
[59] Damjanov, A. and Damjanov, I. (1992) Isolation of serine protease from granulated metrial gland cells of mice and rats with lectin from Dolichos biflorus. Journal of Reproduction and Fertility, 95, 679-684. doi:10.1530/jrf.0.0950679
[60] Stewart, I.J and Webster, A.J. (1997) Lectin histochemical studies of mouse granulated metrial gland cells. Histochemical Journal, 29, 885-892. doi:10.1023/A:1026498025550
[61] Wu, A.M. and Sugii, S. (1988) Differential binding properties of GalNac and/or Gal specific lectins. In: Wu, A.M. and Adams, L.G., Eds., Advances Experimental Medicine and Biology, Plenum Press, New York, 205-263.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.