Photokilling of Escherichia coli Using Hybrid Titania Nanoparticles Suspended in an Aqueous Liquid


In this work, the photokilling of Escherichia coli using a “one-pot” synthesized suspension of anatase crystallized nanoparticles is evaluated. Preliminary to the biological tests concerning the antibacterial efficiency, the fabricated suspension, using a derived solgel process in soft chemistry condition, is characterized. Structural properties of the nanoparticles are investigated using Electronic Transmission Microscopy (TEM) equipped with Selected Area Electron Diffraction (SAED) probe and X-ray diffraction. The inorganic solid content was evaluated by Thermogravimetric Analysis (TGA). Photodegradation of Acid Orange 7 in aqueous solution was used a probe to assess the photocatalytic activity of the elaborated suspension under UV irradiation. The photokilling of Escherichia coli in presence of hybrid TiO2 nanoparticles suspended in aqueous liquid under UV irradiation is evaluated. Such TiO2 nanoparticles suspension shows a strong bactericidal activity with the total destruction of bacteria after only one hour.

Share and Cite:

C. Massard, M. Bonnet, P. Veisseire, Y. Sibaud, E. Caudron and K. Awitor, "Photokilling of Escherichia coli Using Hybrid Titania Nanoparticles Suspended in an Aqueous Liquid," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 137-144. doi: 10.4236/jbnb.2013.42019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. S. Hoffman, P. Mendola, D. Savitz, A. Herring, D. Loomis, K. Hartmann, P. Singer, H. Weinberg and A. Olshan, “Drinking Water Disinfection By-Product Exposure and Fetal Growth,” Epidemiology, Vol. 19, No. 5, 2008, pp. 729-737. doi:10.1097/EDE.0b013e3181812bd4
[2] S. Richardson and C. Postigo, “Drinking Water Disinfection By-Products,” In: Emerging Organic Contaminants and Human Health, Springer, Berlin & Heidelberg, pp. 93-137.
[3] L. Backer, D. Ashley, M. Bonin, F. Cardinali, S. Kieszak, J. Wooten, et al., “Household Exposures to Drinking Water Disinfection By-Products: Whole Blood Trihalomethane Levels,” Journal of Exposure Analysis and Environmental Epidemiology, Vol. 10, No. 4, 2000, pp. 321326. doi:10.1038/sj.jea.7500098
[4] M. Gosau, S. Hahnel, F. Schwarz, T. Gerlach, T. Reichert and R. Bürgers, “Effect of Six Different Peri-Implantitis Disinfection Methods on in Vivo Human Oral Biofilm,” Clinical Oral Implants Research, Vol. 21, No. 8, 2010, pp. 866-872. doi:10.1111/j.1600-0501.2009.01908.x
[5] B. Gan, J. Kim, G. Reid, P. Cadieux and J. C. Howard, “Lactobacillus Fermentum RC-14 Inhibits Staphylococcus Aureus Infection of Surgical Implants in Rats,” Journal of Infectious Diseases, Vol. 185, No. 5, 2002, pp. 1369-1372. doi:10.1086/340126
[6] J. Reefhuis, M. Honein, C. Whitney, S. Chamany, E. Mann, K. Biernath, K. Broder, S. Manning, S. Avashia, M. Victor, et al., “Risk of Bacterial Meningitis in Children with Cochlear Implants,” New England Journal of Medicine, Vol. 349, No. 5, 2003, pp. 435-445. doi:10.1056/NEJMoa031101
[7] K. Kühn, I. Chaberny, K. Massholder, M. Stickler, V. Benz, H. Sonntag and L. Erdinger, “Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light,” Chemosphere, Vol. 53, No. 1, 2003, pp. 71-77. doi:10.1016/S0045-6535(03)00362-X
[8] K. Sunada, T. Watanabe and K. Hashimoto, “Studies on Photokilling of Bacteria on TiO2 Film,” Journal of Photochemistry and Photobiology, Vol. 156, No. 1, 2003, pp. 227-233. doi:10.1016/S1010-6030(02)00434-3
[9] M. Cho, H. Chung, W. Choi and J. Yoon, “Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO2 Photocatalytic Disinfection,” Applied and Environmental Microbiology, Vol. 71, No. 1, 2005, pp. 270275. doi:10.1128/AEM.71.1.270-275.2005
[10] J. Verran, G. Sandoval, N. S. Allen, M. Edge and J. Stratton, “Variables Affecting the Antibacterial Properties of Nano and Pigmentary Titania Particles in Suspension,” Dyes and Pigments, Vol. 73, No. 3, 2007, pp. 298-304. doi:10.1016/j.dyepig.2006.01.003
[11] B. Pal, I. Singh, K. Angrish, R. Aminedi and N. Das, “Rapid Photokilling of Gram-Negative Escherichia coli Bacteria by Platinum Dispersed Titania Nanocomposite Films,” Materials Chemistry and Physics, Vol. 136, No. 1, 2012, pp. 21-27.
[12] G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, A. A. Zahir and K. Velayutham, “Fungus-Mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity against Pathogenic Bacteria,” Spectrochimica Acta Part A, Vol. 91, 2012, pp. 23-29. doi:10.1016/j.saa.2012.01.011
[13] A. Kumar, A. K. Pandey, S. S. Singh, R. Shanker and A. Dhawan, “Engineered ZnO and TiO2 Nanoparticles Induce Oxidative Stress and DNA Damage Leading to Reduced Viability of Escherichia coli,” Free Radical Biology and Medicine, Vol. 51, No. 10, 2011, pp. 1872-1881.
[14] Y. Xie, Y. He, P. L. Irwin, T. Jin and X. Shi, “Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni,” Applied and Environnemental Microbiology, Vol. 77, No. 7, 2011, pp. 2325-2331. doi:10.1128/AEM.02149-10
[15] R. K. Dutta, B. P. Nenavathu, M. K. Gangishetty and A. V. R. Reddy, “Studies on Antibacterial Activity of ZnO Nanoparticles by ROS Induced Lipid Peroxidation,” Colloids and Surfaces, Vol. 94, No. 3, 2012, pp. 143-150. doi:10.1016/j.colsurfb.2012.01.046
[16] J. McCormick, B. Zhao, S. Rykov, H. Wang and J. Chen, “Thermal Stability of Flame-Synthesized Anatase TiO2 Nanoparticles,” The Journal of Physical Chemistry B, Vol. 108, No. 45, 2004, pp. 17398-17342. doi:10.1021/jp046874f
[17] D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang and Z. Bian, “Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles,” The Journal of Physical Chemistry C, Vol. 112, No. 22, 2008, pp. 84868494. doi:10.1021/jp800127x
[18] W. J. Tseng and K. C. Lin, “Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions,” Materials Science and Engineering: A, Vol. 355, No. 1, 2011, pp. 186-191. doi:10.1016/S0921-5093(03)00063-7
[19] M. Kanna and S. Wongnawa, “Mixed Amorphous and Nanocrystalline TiO2 Powders Prepared by Sol-Gel Method: Characterization and Photocatalytic Study,” Materials Chemistry and Physics, Vol. 110, No. 1, 2008, pp. 166-175. doi:10.1016/j.matchemphys.2008.01.037
[20] I. Paramasivam, J. M. Macak and P. Schmuki, “Photocatalytic Activity of TiO2 Nanotube Layers Loaded with Ag and Au Nanoparticles,” Electrochemistry Communications, Vol. 10, No. 1, 2008, pp. 71-75. doi:10.1016/j.elecom.2007.11.001
[21] E. Feschet-Chassot, V. Raspal, Y. Sibaud, O. K. Awitor, F. Bonnemoy, J. L. Bonnet and J. Bohatier, “Tunable Functionality and Toxicity Studies of Titanium Dioxide Nanotube Layers,” Thin Solid Films, Vol. 519, No. 8, 2011, pp. 2564-2568. doi:10.1016/j.tsf.2010.12.184
[22] Y.-H. Tsuang, J.-S. Sun, Y.-C. Huang, C.-H. Lu, W. H.-S. Chang and C.-C. Wang, “Studies of Photokilling of Bateria Using Titanium Dioxide Nanoparticles,” Artificial Organs, Vol. 32, No. 2, 2008, pp. 167-147. doi:10.1111/j.1525-1594.2007.00530.x
[23] M. Cho, H. Chung, W. Choi and J. Yoon, “Linear Correlation between Inactivation of E. coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection,” Water Research, Vol. 38, No. 4, 2004, pp. 1069-1077. doi:10.1016/j.watres.2003.10.029
[24] L. K. Adams, D. Y. Lyon and P. J. J. Alvarez, “Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions,” Water Research, Vol. 40, No. 19, 2006, pp. 3527-3532. doi:10.1016/j.watres.2006.08.004
[25] G. Bringmann and R. Kuehn, “Comparison of the Toxicity Thresholds of Water Pollutants to Bacteriae, Algae and Protozoa in the Cell Multiplication Inhibition Test,” Water Research, Vol. 14, No. 3, 1980, pp. 231-241. doi:10.1016/0043-1354(80)90093-7
[26] X.-B. Chen, W.-H. Fang and D. L. Phillips, “Theoretical Studies of the Photochemical Dynamics of Acetylacetone: Isomerization, Dissociation, and Dehydration Reactions,” Journal of Physical Chemistry A, Vol. 110, No. 13, 2006, pp. 4434-4441. doi:10.1021/jp057306i

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.