Effect of Mn Doping on Solvothermal Synthesis of CdS Nanowires
Zinki Jindal, N. K. Verma
.
DOI: 10.4236/msa.2010.14033   PDF   HTML     5,239 Downloads   10,322 Views   Citations

Abstract

High aspect ratio (up to 100) CdS nanowires having average diameter of 15 nm and length varying from 0.5-1.5 μm have been synthesized using solvothermal technique in ethylenediamine as a solvent at 120℃ and the effect of Mn doping on morphology and optical properties has been studied. X-ray diffraction analysis shows the typical in-ter-planar spacing and the diffraction peaks corresponding to the hexagonal wurzite phase of CdS. Morphological study has been done through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the optical studies have been conducted through absorption spectra and room temperature photoluminescence (PL).

Share and Cite:

Z. Jindal and N. Verma, "Effect of Mn Doping on Solvothermal Synthesis of CdS Nanowires," Materials Sciences and Applications, Vol. 1 No. 4, 2010, pp. 210-216. doi: 10.4236/msa.2010.14033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, Nature, Vol. 354, 1991, pp. 56.
[2] Z. L. Wang and J. H. Song, Science, Vol. 312, 2006, pp. 242.
[3] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and Y. Q. Yan, Adv. Mater., Vol. 15, 2003, pp. 353.
[4] W. Q. Han, S. S Fan, Q. Q. Li and Y. D. Hu, Science, Vol. 277, 1997, pp. 1287.
[5] A. M. Morales and C. M. Lieber, Science, Vol. 279, 1998, pp. 208.
[6] J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, Science, Vol. 280, 1998, pp. 1716.
[7] J. T. Hu, O. Y. Min, P. D. Yang and C. M Lieber, Nature, Vol. 399, 1999, pp. 48.
[8] C. N. R. Rao, F. L. Deepak, G. Gundiah and A. Govindaraj, Prog. Solid State Chem. Vol. 31, 2003, pp. 5.
[9] S. Kar, S. Santra and H. Heinrich, J. Phys. Chem. C, Vol. 112, 2008, pp. 4036.
[10] M. Morkel, L. Weinhardt, B. Lohmu¨ller, C. Heske, E. Umbach, W. Riedl, S. Zweigart and F. Karg, Appl. Phys. Lett., Vol. 79, 2001, pp. 4482.
[11] X. F. Duan and C. M. Lieber, Adv. Mater., Vol. 12, 2000, pp. 298.
[12] C. Ye, G. Meng, Y. Wang, Z. Jiang and L. Zhang, J. Phys. Chem. B, Vol. 106, 2002, pp. 10338.
[13] D. Routkevitch, T. Bigioni, M. Moskovits and J. M. Xu, J. Phys. Chem., Vol. 100, 1996, pp. 14037.
[14] J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. N. Xia and Y. T. Qian, Adv. Mater., Vol. 12, 2000, pp. 1348.
[15] Y. J. Xiong, Y. Xie, J. Yang, R. Zhang, C. Z. Wu and G. A. Du, J. Mater. Chem., Vol. 12, 2002, pp. 3712.
[16] F. Gao, Q. Y. Lu and D. Y. Zhao, Adv. Mater., Vol. 15, 2003, pp. 739.
[17] Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang and Y. T. Qian, Inorg. Chem., Vol. 38, 1999, pp. 1382.
[18] A. Datta, S. Kar, J. Ghatak, and S. Chaudhari, J. Nanosci. Nanotechnol., Vol. 7, 2007, pp. 677.
[19] F. W. G. Li and Z. Zhang, J. Nanoparticle Research, Vol. 7, 2005, pp. 685.
[20] R.N. Bhargava, D. Gallagher and T. Welker, J. Lumin., Vol. 275, 1994, pp. 60.
[21] L. Brus, J. Phys. Chem., Vol. 90, 1998, pp. 2555.
[22] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon and H. J. Dai, Nano. Lett., Vol. 5, 2005, pp. 345.
[23] M. Tanaka, J. F. Qi and Y. Masumoto, J. Crystal Growth, Vol. 214/215, 2000, pp. 410.
[24] S. M. Liu, F. Q. Liu, H. Q. Guo, Z. H. Zhamg and Z. G. Wang, Solid State Comuun., Vol. 115, 2000, pp. 615.
[25] M. Tanaka and Y. Masumoto, Solid State Commun., Vol. 120, 2001, pp. 7.
[26] D. M. Hofmann, A. Hofstaetter, U. Leib, B. K. Meyer and G. Counio, J. Crystal Growth, Vol. 184/185, 1998, pp. 383.
[27] J. S. Jang, S. H. Choi, H. Park, W. Choi and J. S. Lee, J. Nanosci. Nanotechnol., Vol. 6, 2006, pp. 3642.
[28] P. V. Radovanovic, K. G. Stamplecoskie and B. G. Pautler, J. Am. Chem. Soc., Vol. 129, 2007, pp. 10980.
[29] Balram Tripathia, F. Singhb, D.K. Avasthib, D. Dasc, Y.K. Vijaya, Physica B, Vol. 400, 2007, pp. 70-76.
[30] Y. Wang, G. Meng, L. Zhang, C. Liang and J. Zhang, Chem. Mater., Vol. 14, 2002, pp. 1773.
[31] R. L. Morales, O. Z. Angel and G. T. Delgado, Appl. Sur. Sci., Vol. 562, 2001, pp. 175.
[32] T. Gao, G. W. Meng and T. H. Wang, Chin. Phys. Lett., Vol. 21, 2004, pp. 959.
[33] L. Levy, N. Feltin, D. Ingert, and M. P. Pileni, J. Phys. Chem. B, Vol. 101, 1997, pp. 9153.
[34] D. S. Kim, Y. J. Cho, J. P. J. Yoon, Y. Jo and M.-H. Jung, J. Phys. Chem. C, Vol. 111, 2007, pp. 10861.
[35] S. Sapra , A. Prakash , A. Ghanghrekar, N. Perasamy and D. D. Sarma, J. Phys. Chem. B, Vol. 109, 2005, pp. 1663.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.