Effect of Thermal Treatment of the Hydroxyapatite Powders on the Micropore and Microstructure of Porous Biphasic Calcium Phosphate Composite Granules

DOI: 10.4236/jbnb.2013.42015   PDF   HTML   XML   4,884 Downloads   6,494 Views   Citations


The effect of thermal treatment of the hydroxyapatite powders on the micropore structure of porous biphasic calcium phosphate (BCP) granules was examined. The porous BCP granules could be attained through mixing and sintering/fracturing thermally treated 60 wt% hydroxyapatite powders and calcined 40 wt% β-tricalcium phosphate powders. The observed Scanning electron microscopy (SEM) morphologies showed that the density of micropores (0.1 - 2.0 μm) including interconnected micropores of the porous BCP granules mixed with hydroxyapatite powders thermally treated at 900°C was significantly improved and the composite particles of porous BCP granules were homogeneously mixed and distributed. This result indicates that the particles of hydroxyapatite powders that have a tendency to agglomerate at a room temperature were well isolated and dispersed through thermal treatment processing before mixing with calcined β-tricalcium phosphate powders. The microstructural characterizations such as phase purity and composition of porous BCP granules were performed and verified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis.

Share and Cite:

D. Lee, Y. Pai and S. Chang, "Effect of Thermal Treatment of the Hydroxyapatite Powders on the Micropore and Microstructure of Porous Biphasic Calcium Phosphate Composite Granules," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 114-118. doi: 10.4236/jbnb.2013.42015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Yubao, C. P. A. T. Klein, J. Wijn, S. Meer and K. Groot, “Shape Change and Phase Transition of NeedleLike Non-Stoichiometric Apatite Crystals,” Journal of Materials Science: Materials in Medicine, Vol. 5, No. 5, 1994, pp. 263-268. doi:10.1007/BF00122395
[2] I. H. Arita, V. M. Castano and D. S. Wilkinson, “Synthesis and Processing of Hydroxyapatite Ceramic Tapes with Controlled Porosity,” Journal of Materials Science: Materials in Medicine, Vol. 6, No. 1, 1995, pp. 19-23. doi:10.1007/BF00121241
[3] D. Liu, “Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic,” Ceramics International, Vol. 23, No. 2, 1997, pp. 135139. doi:10.1016/S0272-8842(96)00009-0
[4] A. Tas, F. Korkusuz, M. Tumucin and N. Akkas, “An Investigation of the Chemical Synthesis and High-Temperature Sintering Behaviour of Calcium Hydroxyapatite (HA) and Tricalcium Phosphate (TCP) Bioceramics,” Journal of Materials Science: Materials in Medicine, Vol. 8, No. 2, 1997, pp. 91-96.
[5] R. Rao, H. N. Roopa and T. S. Kannan, “Solid State Synthesis and Thermal Stability of HAP and HAP-β-TCP Composite Ceramic Powders,” Journal of Materials Science: Materials in Medicine, Vol. 8, No. 8, 1997, pp. 511518. doi:10.1023/A:1018586412270
[6] G. Daculsi, R. Z. Legeros, E. Nery, K. Lynch and B. Kerebel, “Transformation of Biphasic Calcium Phosphate Ceramics in Vivo: Ultrastructural and Physicochemical Characterization,” Journal of Biomedical Materials Research, Vol. 23, No. 8, 1989, pp. 883-894. doi:10.1002/jbm.820230806
[7] G. Daculsi, O. Laboux, O. Malard and P. Weiss, “Current State of the Art of Biphasic Calcium Phosphate Bioceramics,” Journal of Materials Science: Materials in Medicine, Vol. 14, No. 3, 2003, pp. 195-200. doi:10.1023/A:1022842404495
[8] U. Ripamonti, “Osteoinduction in Porous Hydroxyapatite Implanted in Heterotopic Sites of Different Animal Models,” Biomaterials, Vol. 17, No. 1, 1996, pp. 31-35. doi:10.1016/0142-9612(96)80752-6
[9] S. E. Lobo and T. L. Arinzeh, “Biphasic Calcium Phosphate Ceramics for Bone Regeneration and Tissue Engineering Applications,” Materials, Vol. 3, No. 2, 2010, pp. 815-826. doi:10.3390/ma3020815
[10] O. Gauthier, J. M. Bouler, E. Aguado, R. Z. Legeros, P. Pilet and G. Daculsi, “Elaboration Conditions Influence Physicochemical Properties and in Vivo Bioactivity of Macroporous Biphasic Calcium Phosphate Ceramics,” Journal of Materials Science: Materials in Medicine, Vol. 10, No. 4, 1999, pp. 199-204. doi:10.1023/A:1008949910440
[11] K. A. Hing, L. F. Wilson and T. Buckland, “Comparative Performance of Three Ceramic Bone Graft Substitutes,” The Spine Journal, Vol. 7, No. 4, 2007, pp. 475-490. doi:10.1016/j.spinee.2006.07.017
[12] R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares and J. P. Legeros, “Biphasic Calcium Phosphate Bioceramics: Preparation, Properties and Appications,” Journal of Materials Science: Materials in Medicine, Vol. 14, No. 3, 2003, pp. 201-209. doi:10.1023/A:1022872421333
[13] K. A. Hing, B. Annaz, S. Saeed, P. A. Revell and T. Buckland, “Microprosity Enhances Bioactivity of Synthetic Bone Graft Substitutes,” Journal of Materials Science: Materials in Medicine, Vol. 16, No. 5, 2005, pp. 467-475. doi:10.1007/s10856-005-6988-1
[14] M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda and R. Quarto, “Role of Scaffold Internal Structure on in Vivo Bone Formation in Macroporous Calcium Phosphate Bioceramics,” Biomaterials, Vol. 27, No. 17, 2006, pp. 3230-3237. doi:10.1016/j.biomaterials.2006.01.031
[15] G. Daculsi and R. Legeros, “Encyclopedia of Biomaterials and Biomedical Engineering,” Marcel Dekker Inc., New York, 2006, p. 1.
[16] P. Habibovic, T. M. Sees, M. A. Doel, C. A. Blitterswijk and K. Groot, “Osteoinduction by Biomaterials-Physicochemical and Structural Influences,” Journal of Biomedical Materials Research Part A, Vol. 77A, No. 4, 2006, pp. 747-762. doi:10.1002/jbm.a.30712
[17] H. Yuan, K. Kurashima, J. D. Bruijn, Y. Li, K. Groot and X. Zhang, “A Preliminary Study on Osteoinduction of Two Kinds of Calcium Phosphate Ceramics,” Biomaterials, Vol. 20, No. 19, 1999, pp. 1799-1806. doi:10.1016/S0142-9612(99)00075-7
[18] G. Daculsi and P. Layrolle, “Osteoinductive Properties of Micro Macroporous Biphasic Calcium Phosphate Bioceramics,” Key Engineering Materials, Vol. 254-256, 2004, pp. 1005-1008. doi:10.4028/www.scientific.net/KEM.254-256.1005
[19] D. L. Nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace, P. Pilet and P. Layrolle, “Ectopic Bone Formation by Microporous Calcium Phosphate Ceramic Particles in Sheep Muscles,” Bone, Vol. 36, No. 6, 2005, pp. 1086-1093. doi:10.1016/j.bone.2005.02.017
[20] P. Habibovic, H. Yuan, C. M. Valk, G. Meijer, C. A. Blitterswijk and K. Groot, “3D Microenvironment as Essential Element for Osteoinduction by Biomaterials,” Biomaterials, Vol. 26, No. 17, 2005, pp. 3565-3575. doi:10.1016/j.biomaterials.2004.09.056
[21] E. Landi, A. Tampieri, G. Celotti and S. Sprio, “Densification Behaviour and Mechanisms of Synthetic Hydroxyapatites,” Journal of the European Ceramic Society, Vol. 20, No. 14-15, 2000, pp. 2377-2387. doi:10.1016/S0955-2219(00)00154-0
[22] L. Zhang, N. Hanagata, M. Maeda, T. Minowa, T. Ikoma, H. Fan and X. Zhang, “Porous Hydroxyapatite and Biphasic Calcium Phosphate Ceramics Promote Ectopic Osteoblast Differentiation from Mesenchymal Stem Cells,” Science and Technology of Advanced Materials, Vol. 10, No. 2, 2009, Article ID: 025003. doi:10.1088/1468-6996/10/2/025003

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.