Behavioral Pattern of Native Food Isolates of Yersinia enterocolitica and Yersinia intermedia under Simulated Time-Temperature Combinations of the Food Chain

DOI: 10.4236/fns.2013.44047   PDF   HTML     3,189 Downloads   5,293 Views   Citations

Abstract

The public health significance of Yersinia spp. gives a new dimension to the prevailing food chain, wherein the foods do get exposed to heat and cold treatments. In this study, the effect of heat treatment on the native isolates of Yersinia enterocolitica CFR 2301 and Y. intermedia CFR 2303 revealed the D-values ranging from the lowest of 0.08 min at 65in skim milk/beef gravy to the highest of 18.52 min at 50in beef gravy. The heat sensitivity of both these cultures was in the order of Milli-Q water > 0.85% saline > skim milk > beef gravy. The z-values of the test cultures ranged from 7.55for Y. intermedia to 12.08 for Y. enterocolitica. The heat sensitivity in Y. enterocolitica appeared to be related with growth incubation temperatures and also fatty acid profile of cell membrane. The effect of low temperature treatments (20 , 0 and 4 for 20 d) in water, saline and skim milk revealed the ability of Y. enterocolitica to survive more efficiently at 20, while Y. intermedia was more tolerant at 0. In packaged drinking water, Y. enterocolitica could survive and grow at 4and 16, while at 30, inactivation was rapid. The findings did indicate that heat and cold treatments would not always ensure safety from Y. enterocolitica and Y. intermedia in the food chain.

Share and Cite:

K. Divya and M. Varadaraj, "Behavioral Pattern of Native Food Isolates of Yersinia enterocolitica and Yersinia intermedia under Simulated Time-Temperature Combinations of the Food Chain," Food and Nutrition Sciences, Vol. 4 No. 4, 2013, pp. 365-375. doi: 10.4236/fns.2013.44047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Mor-Mur and J. Yuste, “Emerging Bacterial Pathogens in Meat and Poultry: An Overview,” Food and Bio process Technology, Vol. 3, No. 1, 2010, pp. 24-35. doi:10.1007/s11947-009-0189-8
[2] M. Severgnini, P. Cremonesi, C. Consolandi, G. DeBellis and B. Castiglioni, “Advances in DNA Microarray Technology for the Detection of Foodborne Pathogens,” Food and Bioprocess Technology, Vol. 4, No. 6, 2011, pp. 936-953. doi:10.1007/s11947-010-0430-5
[3] S. Sorqvist, “Heat Resistance in Liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp.,” Acta Veterinarian Scandinavian, Vol. 44, 2003, pp. 1-19. doi:10.1186/1751-0147-44-1
[4] T. Koutchma, “Advances in Ultraviolet Light Technology for Non-Thermal Processing of Liquid Foods,” Food and Bioprocess Technology, Vol. 2, No. 2, 2009, pp. 138-155. doi:10.1007/s11947-008-0178-3
[5] L. Acu?a, R. D. Morero and A. Bellomio, “Development of Wide Spectrum Hybrid Bacteriocins for Food Biopreservation,” Food and Bioprocess Technology, Vol. 4, No. 6, 2011, pp. 1029-1049. doi:10.1007/s11947-010-0465-7
[6] J. M. Miranda, F. Jorge, L. Dominguez, A. Cepeda and C. M. Franco, “In Vitro Growth Inhibition of Foodborne Pathogens and Food Spoilage Microorganisms by Vitamin K5,” Food and Bioprocess Technology, Vol. 4, No. 6, 2011, pp. 1060-1065. doi:10.1007/s11947-010-0413-6
[7] K. H. Divya and M. C. Varadaraj, “Response Surface Plots for the Behavioral Pattern of Yersinia enterocolitica in Chocolate Milk as Affected by Trans-Cinnamaldehyde, a Spice Essential Oil Constituent,” Food and Bioprocess Technology, Vol. 5, No. 2, 2012, pp. 498-507. doi:10.1007/s11947-009-0297-5
[8] R. Pagan, P. Manas, J. Raso and F. J. S. Trepat, “Heat Resistance of Yersinia enterocolitica Grown at Different Temperatures and Heated in Different Media,” International Journal of Food Microbiology, Vol. 47, No. 1-2, 1999, pp. 59-66. doi:10.1016/S0168-1605(99)00008-2
[9] D. J. Bolton, C. M. McMahon, A. M. Doherty, J. J. Sheridan, D. A. McDowell, I. S. Blair and D. Harrington, “Thermal Inactivation of Listeria monocytogenes and Yersinia enterocolitica in Minced Beef under Laboratory Conditions and in Sous-Vide Prepared Minced and Solid Beef Cooked in a Commercial Retort,” Journal of Ap plied Microbiology, Vol. 88, 2000, pp. 626-632. doi:10.1046/j.1365-2672.2000.01001.x
[10] H. Hayashidani, Y. Hara-Kudo, S. Kinoshita, K. Saeki, A. T. Okatani, Y. Nomura and S. Kumagai, “Differences in Heat Resistance among Pathogenic Yersinia enterocolitica Depended on Growth Temperature and Serotype,” Journal of Food Protection, Vol. 68, No. 5, 2005, pp. 1081-1082.
[11] G. I. Favier, M. E. Escudero and A. M. S. de Guzman, “Thermal Inactivation of Yersinia enterocolitica in Liquid Egg Products,” Journal of Food Safety, Vol. 28, No. 2, 2008, pp. 157-169. doi:10.1111/j.1745-4565.2008.00103.x
[12] C. O. Gill and M. P. Reichel, “Growth of the Cold-To lerant Pathogens Yersinia enterocolitica, Aeromonas hydrophila and Listeria monocytogenes on High pH Beef Packaged under Vacuum or Carbon Dioxide,” Food Microbiology, Vol. 6, No. 4, 1989, pp. 223-230. doi:10.1016/S0740-0020(89)80003-6
[13] J. A. Hudson, S. J. Mott and N. Penny, “Growth of Listeria monocytogenes, Aeromonas hydrophila and Yersinia enterocolitica on Vacuum and Saturated Carbon Dioxide Controlled Atmosphere Packaged Sliced Roast Beef,” Journal of Food Protection, Vol. 57, No. 3, 1994, pp. 204-208.
[14] M. K. Amin and F. A. Draughon, “Growth Characteristics of Yersinia enterocolitica in Pasteurised Skim Milk,” Journal of Food Protection, Vol. 50, No. 10, 1987, pp. 849-852.
[15] J. P. Erickson and P. Jenkins, “Behavior of Psychrotropic Pathogens Listeria monocytogenes, Yersinia enterocolitica, and Aeromonas hydrophila in Commercially Pasteurized Eggs Held at 2, 6.7 and 12.8?C,” Journal of Food Protection, Vol. 55, No. 1, 1992, pp. 8-12.
[16] S. Toora, E. Badu-Amoako, R. F. Ablett and J. Smith, “Effect of High-Temperature Short-Time Pasteurization, Freezing and Thawing and Constant Freezing, on the Survival of Yersinia enterocolitica in Milk,” Journal of Food Protection, Vol. 55, No. 10, 1992, pp. 803-805.
[17] C. L. Little and S. Knochel, “Growth and Survival of Yersinia enterocolitica, Salmonella and Bacillus cereus in Brie Stored at 4, 8 and 20?C,” International Journal of Food Microbiology, Vol. 24, No. 1-2, 1994, pp. 137-145. doi:10.1016/0168-1605(94)90113-9
[18] H. Tsuchiya, M. Sato, N. Kanematsu, M. Kato, Y. Hosnino, N. Takagi and I. Namikawa, “Temperature-Depen dent Changes in Phospholipid and Fatty Acid Composi tion and Membrane Lipid Fluidity of Yersinia enterocolitica,” Letters in Applied Microbiology, Vol. 5, No. 1, 1987, pp. 15-18. doi:10.1111/j.1472-765X.1987.tb01634.x
[19] E. Nagamachi, S. Shibuya, Y. Hirai, O. Matsushita, K. Tomochika and Y. Kanemasa, “Adaptational Changes of Fatty Acid Composition and the Physical State of Mem brane Lipids Following the Change of Growth Temperature in Yersinia enterocolitica,” Microbiology and Im munology, Vol. 35, No. 12, 1991, pp. 1085-1093.
[20] P. W. Bodnaruk and D. A. Golden, “Influence of pH and Incubation Temperature on Fatty Acid Composition and Virulence Factors of Yersinia enterocolitica,” Food Mi crobiology, Vol. 13, No. 1, 1996, pp. 17-22. doi:10.1006/fmic.1996.0002
[21] A. Sulakvelidze, “Yersiniae Other than Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis: The Ignored Species,” Microbes and Infection, Vol. 2, No. 5, 2000, pp. 497-513. doi:10.1016/S1286-4579(00)00311-7
[22] K. H. Divya and M. C. Varadaraj, “Prevalence of Very Low Numbers of Potential Pathogenic Isolates of Yersinia enterocolitica and Yersinia intermedia in Traditional Fast Foods of India,” Indian Journal of Microbiology, Vol. 51, No. 4, 2011, pp. 461-468. doi:10.1007/s12088-011-0181-7
[23] V. K. Juneja and B. S. Eblen, “Predictive Thermal Inactivation Model for Listeria monocytogenes with Tempe rature, pH, NaCl, and Sodium Pyrophosphate as Control ling Factors,” Journal of Food Protection, Vol. 62, No. 9, 1999, pp. 986-993.
[24] B. Ostle and L. C. Malone, “Statistics in Research: Basic Concepts and Techniques for Research Workers,” 4th Edition, Iowa State Press, Iowa, 1988.
[25] A. G. Marr and J. L. Ingraham, “Effect of Temperature on the Composition of Fatty Acids in Escherichia coli,” Journal of Bacteriology, Vol. 84, No. 6, 1962, pp. 1260-1267.
[26] W. R. Morrison and L. M. Smith, “Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol,” Journal of Lipid Research, Vol. 5, 1964, pp. 600-608.
[27] D. Hughes, “Isolation of Yersinia enterocolitica from Milk and a Dairy Farm in Australia,” Journal of Applied Bacteriology, Vol. 46, No. 1, 1979, pp. 125-130. doi:10.1111/j.1365-2672.1979.tb02589.x
[28] M. O. Hanna, J. C. Stewart, Z. L. Carpenter and C. Vanderzant, “Effect of Heating, Freezing, and pH on Yersinia enterocolitica-Like Organisms from Meat,” Journal of Food Protection, Vol. 40, No. 10, 1977, pp. 689-692.
[29] J. Lovett, J. G. Bradshaw and J. T. Peeler, “Thermal Inac tivation of Yersinia enterocolitica in Milk,” Applied and Environmental Microbiology, Vol. 44, No. 2, 1982, pp. 517-519.
[30] D. W. Francis, P. L. Spaulding and J. Lovett, “Enterotoxin Production and Thermal Resistance of Yersinia enterocolitica in Milk,” Applied and Environmental Micro biology, Vol. 40, No. 1, 1980, pp. 174-176.
[31] K. Shenoy and E. A. Murano, “Effect of Heat Shock on the Thermotolerance and Protein Composition of Yersinia enterocolitica in Brain Heart Infusion Broth and Ground Pork,” Journal of Food Protection, Vol. 59, No. 4, 1996, pp. 360-364.
[32] F. M. Bartlett and A. E. Hawke, “Heat Resistance of Listeria monocytogenes Scott A and HAL 957E1 in Various Liquid Egg Products,” Journal of Food Protection, Vol. 58, No. 11, 1995, pp. 1211-1214.
[33] V. K. Juneja, H. M. Marks and T. Mohr, “Predictive Thermal Inactivation Model for Effects of Temperature, Sodium Lactate, NaCl, and Sodium Pyrophosphate on Salmonella Serotypes in Ground Beef,” Applied and Environmental Microbiology, Vol. 69, No. 9, 2003, pp. 5138-5156. doi:10.1128/AEM.69.9.5138-5156.2003
[34] C. A. Abbas and G. L. Card, “The Relationships between Growth Temperature, Fatty Acid Composition and the Physical State and Fluidity of Membrane Lipids in Yersinia enterocolitica,” Biochemistry Biophysics Acta, Vol. 602, No. 3, 1980, pp. 469-476. doi:10.1016/0005-2736(80)90326-0
[35] J. E. Cronan and E. Gelmann, “Physical Properties of Membrane Lipids: Biological Relevance and Regulation,” Bacteriological Reviews, Vol. 39, No. 3, 1975, pp. 232-256.
[36] N. Katsui, T. Tsuchido, M. Takano and I. Shibasaki, “Effect of Pre-Incubation Temperature on the Heat Resistance of Escherichia coli Having Different Fatty Acid Compositions,” Journal of General Microbiology, Vol. 122, No. 2, 1981, pp. 357-361.
[37] V. K. Juneja, T. A. Foglia and B. S. Marmer, “Heat Resistance and Fatty Acid Composition of Listeria monocytogenes: Effect of pH, Acidulant, and Growth Temperature,” Journal of Food Protection, Vol. 61, No. 6, 1998, pp. 683-687.
[38] N. J. Stern, M. D. Pierson and A. W. Kotula, “Growth and Competitive Nature of Yersinia enterocolitica in Whole Milk,” Journal of Food Science, Vol. 45, 1980, pp. 972-974. doi:10.1111/j.1365-2621.1980.tb07490.x
[39] M. O. Hanna, J. C. Stewart, D. L. Zink, Z. L. Carpenter and C. Vanderzant, “Development of Yersinia enterocolitica on Raw and Cooked Beef and Pork at Different Tem peratures,” Journal of Food Science, Vol. 42, No. 5, 1977, pp. 1180-1184. doi:10.1111/j.1365-2621.1977.tb14455.x
[40] K. Tashiro, Y. Kubokura, Y. Kato, K. Kaneko and M. Ogawa, “Survival of Yersinia enterocolitica in Soil and Water,” Journal of Veterinary Medical Science, Vol. 53, 1991, pp. 23-27. doi:10.1292/jvms.53.23
[41] P. A. Blake, M. L. Rosenberg, J. Florencia, J. B. Costa and E. J. Gangarosa, “Cholera in Portugal, 1974. II. Transmission by Bottled Mineral Water,” American Journal of Epidemiology, Vol. 105, No. 4, 1977, pp. 344-348.
[42] A. K. Highsmith, J. C. Feeley, P. Skaliy, J. G. Wells and B. T. Wood, “Isolation of Yersinia enterocolitica from Well Water and Growth in Distilled Water,” Applied and Environmental Microbiology, Vol. 34, No. 6, 1977, pp. 745-750.
[43] L. M. Evison, “Comparative Studies on the Survival of Indicator Organisms and Pathogens in Fresh and Sea Water,” Water Science and Technology, Vol. 20, No. 11 12, 1988, pp. 309-315.
[44] Z. Filip, D. Kaddumulindwa and G. Milde, “Survival of Some Pathogenic and Facultative Pathogenic Bacteria in Ground Water,” Water Science and Technology, Vol. 20, No. 3, 1988, pp. 227-231.
[45] M. Karapinar and S. A. Gonul, “Survival of Yersinia enterocolitica and Escherichia coli in Spring Water,” In ternational Journal of Food Microbiology, Vol. 13, No. 4, 1991, pp. 315-320.
[46] S. I. Terzieva and G. A. McFeters, “Survival and Injury of Escherichia coli, Campylobacter jejuni and Yersinia enterocolitica in Stream Water,” Canadian Journal of Microbiology, Vol. 37, 1991, pp. 785-790. doi:10.1139/m91-135
[47] R. Ramalho, A. Afonso, C. Joaquim, P. Teixeira and P. A. Gibbs, “Survival Characteristics of Pathogens Inoculated into Bottled Mineral Water,” Food Control, Vol. 12, No. 5, 2001, pp. 311-316. doi:10.1016/S0956-7135(01)00010-X

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.