The influence of the blood pressure on the venous cerebral flow measured by magnetic susceptibility (SWI) technique

Abstract

Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to magnetic susceptibility differences between tissues, it is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate the differences in the cerebral venous vasculature produced by the value’s variation of blood pressure. 20 subjects (10 hypertensive and 10 normotensive patients) underwent a MRI system with field strength of 1.5 T using a synergy head coil (7 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 au in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.

Share and Cite:

Martins, H. , Carreiras, M. , Ribeiro, M. , Sousa, P. and Silva-Forte, C. (2013) The influence of the blood pressure on the venous cerebral flow measured by magnetic susceptibility (SWI) technique. Journal of Biomedical Science and Engineering, 6, 426-434. doi: 10.4236/jbise.2013.63A053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Vilela, P., Conceicao, C. and Teresa, P. (2009) Experiência inicial com a técnica de susceptibility-weighted imaging em ressonancia magnética. Acta Médica Portuguesa, 22, 142.
[2] Haacke, E.M. (2006) Susceptibility weighted imaging opening new doors to clinical applications of magnetic resonance imaging. Wayne State University, Detroit.
[3] Khan, N. and Zafar Sajjad, Z. (2008) Susceptibility-weighted imaging resonance imaging. Frontiers of the technology. Pakistan Journal of Neurology Science, 3, 27- 31.
[4] Shetty, N.R. (2006) MR susceptibility weighted imaging and clinical applications. University of Texas at Arlington, Arlington.
[5] Haacke, E.M., Mittal, S., Wu, Z., Neelavalli, J. and Cheng, Y.C. (2009) Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. American Journal of Neuroradiology, 30, 19-30. doi:10.3174/ajnr.A1400
[6] Santhosh, K., Kesavadas, C., Thomas, B., Gupta, A.K., Thamburaj, K. and Kapilamoorthy, T.R. (2009) Susceptibility weighted imaging: A new tool in magnetic resonance imaging of stroke. Clinical Radiology, 648, 74-63. http://www.ncbi.nlm.nih.gov/pubmed/19070701 doi:10.1016/j.crad.2008.04.022
[7] Barnes, S. and Haacke, E.M. (2009) Setting properties of venous blood demonstrated in the peripheral vasculature using susceptibility-weighted imaging (SWI). Journal of Magnetic Resonance Imaging, 29, 1465-1470. http://www.ncbi.nlm.nih.gov/pubmed/19472423 doi:10.1002/jmri.21791
[8] Mittal, S., Wu, Z., Neelavalli, J. and Haacke, E.M. (2009) Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2. American Journal of Neuro-radiology, 30, 232-252. doi:10.3174/ajnr.A1461
[9] Haacke, M. (2007). A new MRI protocol for acquired brain injury: Perfusion Weighted Imaging (PWI), Susceptibility Weighted Imaging (SWI), and Diffusion Tensor Imaging (DTI). Annual BIA of Michigan Conference, 28 September 2007.
[10] European Society of Cardiology (2007) Recomendacoes de Bolso da ESC: Hipertensio arterial. http://www.spc.pt/DL/AreaCientifica/Recomendacoes/AF_POCKET_HIPERTENSAO.pdf
[11] Gasparotti, R., Pinelli, L. and Liserre, R. (2011) New MR sequences in daily practice: Susceptibility weighted imaging. Insights Imaging, 2, 335-347. doi:10.1007/s13244-011-0086-3
[12] Ministério da Saúde. Portal da Saúde (2006) Hipertensao arterial. http://www.min-saude.pt/
[13] Eurotrials (2005). Saúde em mapas e números. Boletim informativo no. 19. http://www.eurotrials.com/contents/files/Boletim_19.pdf
[14] Seeley, R. (2007) Anatomia & fisiologia. 6th Edition, Lusociência, 752-767.
[15] Ministério da Saúde (2011) Administracao Central do Sistema de Saúde. Hipoxia, Hipoxemia. Portal da Codi- ficacao Clínica e do GDH. http://portalcodgdh.min-saude.pt/index.php/Hipoxia,_Hipoxemia
[16] Thom, S. (1997) Arterial structural modifications in hypertension: Effect of treatment. European Heart Journal, E2-E4. doi:10.1016/S0195-668X(97)90001-4
[17] Molina, M., Cunha, R., Herkenhoffl, L. and Mill, J. (2003) Hipertensao arterial e consumo de sal em populacao urbana. Revista de Saúde Pública, 37, 743-750.
[18] Pereira, F. and Sargento, L. (2007) Hemoglobinas normais e anormais—Drepanocitose. Actas de Bioquímica, 8, 125-131.
[19] Medicines and Healthcare Products Regulatory Agency (2010) Device bulletin.
[20] Reichenbach, J.R., Venkatesan, R., Schillinger, D.J., Kido, D.K. and Haacke, E.M. (1997) Small vessels in the human brain: MRVenography with deoxyhemoglobin as an intrinsic contrast agente. Radiology, 204, 272-277. http://www.ncbi.nlm.nih.gov/pubmed/9205259
[21] High blood pressure dangers: Hypertension’s effects on the body (2011). http://www.mayoclinic.com/health/high-blood-pressure/HI00062
[22] Krieger, E., Irigoyen, M. and Krieger, J. (1999) Fisiopatologia da hipertensao. Revista da Sociedade de Cardiologia do Estado de Sao Paulo, 1, 1-7.
[23] Matsushita T., Anami, D., and Arioka, A. (2008) Basics study of susceptibility-weighted imaging at 1.5T. Acta Medica Okayama, 62, 159-168. http://www.lib.okayama-u.ac.jp/www/acta/pdf/62_3_159.pdf
[24] Denk, C. and Rauscher, A. (2010) Susceptibility weighted imaging with multiple echoes. Journal of Magnetic Resonance Imaging, 31, 185-191. doi:10.1002/jmri.21995
[25] Haacke, E.M., Lai, S., Yablonskiy, D.A. and Lin, W. (1995) In vivo validation of the bold mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow. International Journal of Imaging Systems and Technology, 6, 153-163. doi:10.1002/ima.1850060204
[26] Bejoy, T., Sivaraman, S. and Krishnamoorthy, T. (2008) Clinical applications of susceptibility weighted MR imaging of the brain—A pictorial review. Diagnostic Neuro-radiology, 50, 105-116.
[27] Reichenbach, J.R. (2005) Recent advances in SWI. http://www.die.upm.es/costb21/docs/MeetingMar2005/WG1 Szeged Pres.pdf
[28] Sedlacik, J., Kutschbach, C., Rauscher, A., Deisturg, A. and Reichenbach, J.R. (2008) Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). Neuroimage, 43, 36-43. http://www.sciencedirect.com/science/article/pii/S1053811908007957 doi:10.1016/j.neuroimage.2008.07.008
[29] Saini, S., Frankel, R.B., Stark, D.D. and Ferrucci, J.T. (1988) Magnetism: A primer and review. American Journal of Roentgenology, 150, 735-743. doi:10.2214/ajr.150.4.735
[30] Haddar, D., Haacke, E.M., Shegal, V., Delproposto, Z., Salamon, G., Seror, O., et al. (2004) L’imagerie de sus-ceptibilité magbétique: Théorie et applications. Journal of Radiology, 85, 1901-1908. http://www.sciencedirect.com/science/article/pii/S0221036304977591 doi:10.1016/S0221-0363(04)97759-1
[31] Ayaz, M. and Haacke, M. (2008) Defining and catego rizing microbleeds (MB) in neurodegenerative disease using SWI. International Society for Magnetic Resonance in Medicine, 16, 2183.
[32] Budde, J.S., Pohmann, R., Shajan, G. and Ugurbil K. (2009) Susceptibility weighted imaging of human brain at 9.4T. International Society for Magnetic Resonance in Medicine, 17, 43. http://cds.ismrm.org/protected/09MProceedings/files/00043.pdf
[33] Ge, Y., Barnes, Heller, S., Xu, Y., Chen, Q., et al. (2008) 3D high resolution susceptibility weighted imaging (SWI) venography at 3T and 7T. International Society for Magnetic Resonance in Medicine, 16, 1996.
[34] Sardanelli, F. and Di Leo, G. (2009) Biostatistics for radiologists: Planning, performing, and writing a radiologic study. Springer, Berlin.
[35] Pimenta, E. (2008) Hydrochlorothiazide vs. chlorthalidone: All thiazides are the same? Revisata Brasileira Hipertens?o, 15, 166-167.
[36] Ribeiro, J. (2002) Inibidores da enzima conversora da angiotensina e bloqueadores de receptores da angio-tensina II no tratamento da hipertens?o arterial. Revista Brasileira Hipertens?o, 5, 69-72.
[37] MHRA. Department of Health (2007) Device bulletin. Safety guidelines for magnetic resonance imaging equipment in clinical use. http://www.mhra.gov.uk/home/groups/dtsiac/documents/publication/con2033065.pdf
[38] Zivadinov, R., Poloni, G.U., Marr, K., Schirda, C.V., Magnano, C.R. and Carl, E. (2011) Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurology, 11, 128. doi:10.1186/1471-2377-11-128
[39] Nathan, A. and Singer, M. (1999) The oxygen trail: Tissue oxygenation. British Medical Bulletin, 55, 95-108. doi:10.1258/0007142991902312
[40] Hart, M.N. Heistad, D.D. and Brody, M.J. (1980) Effect of chronic hypertension and sympathetic enervation on wall/lumen ratio of cerebral. Journal of the American Heart Association, 2, 419-423.
[41] Harder, S. and Hopp, K. (2008) Mineralization of the deep gray matter with age: A retrospective review with susceptibility-weighted MR Imaging. American Journal of Neuro-radiology, 29, 176-183. doi:10.3174/ajnr.A0770
[42] Bortolotto, L. and Consolim-Colombo, F. (2009) Adre-nergic betablockers. Revista Brasileira Hipertens?o, 16, 215-220.
[43] Haacke, M. and Garbern, J. (2010) Iron stores and cerebral veins in Ms studied by susceptibility weighted-imaging. International Angiology, 29, 149-157. http://www.ccsvi-lombardia.org/wordpress/wp-content/uploads/2011/12/09-2502-ANGY.pdf
[44] Johansson, B. and Fredriksson, K. (1985) Cerebral arteries in hypertension: Structural and hemodynamic aspects. Journal of Cardiovaculars Pharmacology, 7, 90-93. doi:10.1097/00005344-198507002-00017
[45] Haacke, E., Xu, Y., Cheng, Y. and Reichenback, J. (2004) Susceptibility Weighted Imaging (SWI) imaging. Magnetic Resonance in Medicine, 52, 612-618. http://www.ncbi.nlm.nih.gov/pubmed/15334582
[46] Moratal, D., Vallés-Luch, A., Marti-Bonmati, L. and Brummer, M.E. (2008) k-space tutorial: An MRI educational tool for a better understanding of k-space. Biomedical Imaging and Intervention Journal, 4, e15.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.