Metapontum Forest Reserve: Salt Stress Responses in Pinus halepensis

Abstract

Metapontum Forest Reserve is an artificial formation located between mouths of Bradano and Basento river, it is composed prevalently of Aleppo pine (Pinus halepensis). In recent years, the Metapontum coast is characterized by a strong erosive process which has really removed the dune behind the beach moving in the inland and causing the decline of the historical pinewood. This negative effect on plant was induced by an increase in soil salinity, which is one of the major abiotic stresses. A clear understanding of the molecular mechanisms involved in plants response to salt stress is fundamentally important for plant biology. The salinity soil causes broad variety of physiological and biochemical processes, as oxidative damage, also has a negative effect on energy metabolism, which unavoidably resulted in a decreased ATP production through photophosphorylation and, thus, affected the Calvin cycle in photosynthesis. A proteomic approach was utilized to identify key protein which result to be directly responsive to salt stress. Total proteins were extracted from the leaves by a combination of TCA—acetone and phenol, and separated by two-dimensional gel electrophoresis at pH 5 - 8. Spots were stained with Coomassie Brilliant Blue and analyzed with the software PDQuest 8.0 (Bio-Rad) to identify differentially expressed polypeptides. Preliminary analysis revealed around 29 differentially expressed proteins, and they were sequenced by MALDI TOF and LC-MS/MS. Sequenced spots were classified in different functional classes.

Share and Cite:

M. Rocco, T. Lomaglio, A. Loperte and A. Satriani, "Metapontum Forest Reserve: Salt Stress Responses in Pinus halepensis," American Journal of Plant Sciences, Vol. 4 No. 3A, 2013, pp. 674-684. doi: 10.4236/ajps.2013.43A086.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Sharifi, M. Ghorbanli and E. Ebrahimzadeh, “Improved Growth of Salinity Stressed Soybean after Inoculation with Salt Pre-Treated Mycorrhizal Fungi,” Journal of Plant Physiology, Vol. 164, No. 9, 2007, pp. 1144-1151. doi:10.1016/j.jplph.2006.06.016
[2] B. H. Wiebe, R. G. Eilers, W. D. Eilers and J. A. Brierley, “Application of a Risk Indicator for Assessing Trends in Dryland Salinization Risk on the Canadian Prairies,” Canadian Journal of Soil Science, Vol. 87, 2007, pp. 213-224. doi:10.4141/S06-068
[3] V. Chinnusamy, A. Jagendorf and J.-K. Zhu, “Understanding and Improving Salt Tolerance in Plant,” Crop Science, Vol. 45, No. 2, 2005, pp. 437-448. doi:10.2135/cropsci2005.0437
[4] A. A. Ehsanpour and N. Fatahian, “Effect of Salt and Proline on Medicago Sativa Callus,” Plant Cell Tissue Organ Culture, Vol. 73, No. 1, 2003, pp. 53-56. doi:10.1023/A:1022619523726
[5] J. K. Zhu, “Salt and Drought Stress Signal Transduction in Plants,” Annual Review of Plant Biology, Vol. 53, 2002, pp. 247-273. doi:10.1146/annurev.arplant.53.091401.143329
[6] E. Val-preda and U. Simeoni, “Assessment of Coastal Erosion Susceptibility at the National Scale: The Italian case,” Journal of Coastal Conservation, Vol. 9, No. 1, 2003, pp. 43-48. doi:10.1652/1400-0350(2003)009[0043:AOCESA]2.0.CO;2
[7] B. M. S. Giambastiani, M. Antonellini,G. H. P. Oude Es-sink and R. J. Stuurman, “Saltwater Intrusion in the Unconfined Coastal Aquifer of Ravenna (Italy), A Numerical Model,” Journal of Hydrology, Vol. 340, No. 1-2, 2007, pp. 91-104. doi:10.1016/j.jhydrol.2007.04.001
[8] A. Satriani, A. Loperte, T. Simoniello, M. D’Emilio, C. Belviso and V. Lapenna, “A Multidisciplinary Approach for Studying the Forest Reserve of Metapontum (Southern Italy) Affected by Saltwater Intrusion Phenomena,” EGU Geophysical Research Abstracts, Research ID: 909525, 2007, pp. 1607-7962.
[9] A. M. Ebraheem, M. W. Hamburger, E. R. Bayless and N. C. Krothke, “A Study of Acidmine Drainage Using Earth Resistivity Measurements,” Groundwater, Vol. 28, No. 3, 1990, pp. 361-368. doi:10.1111/j.1745-6584.1990.tb02265.x
[10] A. A. M. Ebraheem, M. M. Senosy and K. A. Dahab, “Geoelectrical and Hydrogeochemical Studies for Delineating Ground-Water Contamination Due to Salt-Water Intrusion in the Northern Part of the Nile Delta, Egypt,” Groundwater, Vol. 35, No. 2, 1997, pp. 216-222. doi:10.1111/j.1745-6584.1997.tb00077.x
[11] A. S. El Mahh-moudi, “Geoelectric Resistivity Investigations of Kafr Saqr Sheet, Sharrqiya Governorate, East Nile Delta,” Journal of Petroleum and Mining Engineering, Vol. 2, No. 1, 1999, pp. 84-108.
[12] D. H. Griffiths and R. D. Barker, “Two-Dimensional Resistivity Imaging and Modelling in Areas of Complex Geology,” Journal of Applied Geophysics, Vol. 29, No. 34, 1993 pp. 211-226. doi:10.1016/0926-9851(93)90005-J
[13] T. Dahlin, “2D Resistivity Surveying for Environmental and Engineering Applications,” First Break, Vol. 14, No. 7, 1996, pp. 275-283.
[14] J. W. Hager and J. C. Y. Le Blanc, “Production Scanning Using a Q-q-QLinear Ion Trap (Q TRAPTM) Mass Spectrometer,” Rapid Communications in Mass Spectrometry, Vol. 17, No. 10, 2003, pp. 1056-1064. doi:10.1002/rcm.1020
[15] I. Jorge, R. M. Navarro, C. Lenz and D. Ariza, “The Holm Oak Leaf Proteome: Analytical and Biological Variability in the Protein Expression Level Assessed by 2-DE and Protein Identification Tandem Mass Spectrometry de Novo Sequencing and Sequence Simi-larity Searching,” Proteomics, Vol. 5, No. 1, 2005, pp. 222-234. doi:10.1002/pmic.200400893
[16] I. V. Shilov, S. L. Seymour, A. A. Patel and A. Loboda, “The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra,” Molelular Cellular Proteomics, Vol. 6, No. 6, 2007, pp. 1638-1655. doi:10.1074/mcp.T600050-MCP200
[17] B. Winkel-Shirley, “Biosynthesis of Flavonoids and Effects of Stress,” Current Opinion in Plant Biology, Vol. 5, No. 3, 2002, pp. 218-223. doi:10.1016/S1369-5266(02)00256-X
[18] R. Munns and M. Tester, “Mechanisms of Salinity Tolerance,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 59, 2008, pp. 651-681. doi:10.1146/annurev.arplant.59.032607.092911
[19] E. Vierling, “The Roles of Heat Shock Proteins in Plants,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 42, 1991, pp. 579-620. doi:10.1146/annurev.pp.42.060191.003051
[20] N.-H. Song and Y.-J. Ahn, “DcHsp7.7, a Small Heat Shock Protein in Carrot, Is Tissue-Specifically Expressed under Salt Stress and Confers Tolerance to Salinity,” New Biotechnology, Vol. 28, No. 6, 2011, pp. 698-704. doi:10.1016/j.nbt.2011.04.002
[21] J. S. Marshall and K. Keegstra, “Isolation and Characterization of a cDNA Clone Encoding the Major Hsp70 of the Pea Chloroplastic Stroma,” Plant Physiology, Vol. 100, No. 2, 1992, pp. 1048-1054. doi:10.1104/pp.100.2.1048
[22] J. Wang, C. Zhao, B. Meng, J. Xie, C. Zhou, X. Chen, K. Zhao, J. Shao, Y. Xue, N. Xu, Y. Ma and S. Liu, “The Proteomic Alterations of Thermoanaerobacter Tengcongensis Cultured at Different Temperatures,” Proteomics, Vol. 7, No. 9, 2007, pp. 1409-1419. doi:10.1002/pmic.200500226
[23] B. K. Ndimba, S. Chivasa, W. J. Simon and A. R. Slabas, “Identification of Arabidopsis Salt and Osmotic Stress Responsive Proteins Using Two Dimensional Difference Gel Electrophoresis and Mass Spectrometry,” Proteomics, Vol. 5, No. 16, 2005, pp. 4185-4196. doi:10.1002/pmic.200401282
[24] M. Hajheidari, M. Abdolla-hian-Noghabi, H. Askari, M. Heidari and S. Y. Sadeghian, “Proteome Analysis of Sugar Beet Leaves under Drought Stress,” Proteomics, Vol. 5, No. 4, 2005, pp. 950-960. doi:10.1002/pmic.200401101
[25] S.-P. Yan, Q.-T. Zhang, Z.-C. Tang, W. A. Su and W.-N. Sun, “Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice,” Molecular and Cellular Proteomics, Vol. 5, No. 3, 2006, pp. 484-496. doi:10.1074/mcp.M500251-MCP200
[26] F. Madueno, J. A. Napier and J. C. Gray, “Newly Imported Rieske Iron-Sulfur Protein Associates with Both Cpn6O and Hsp70 in the Chloroplast Stroma,” Plant Cell, Vol. 5, No. 12, 1993, pp. 1865-1876.
[27] M. Schroda, O. Vallon, F. A. Wollman and C. F. Beck, “A Chloroplast-Targeted Heat Shock Protein 70 (HSP70) Contributes to the Photoprotection and Repair of Photosystem II during and after Photoinhibition,” Plant Cell, Vol. 11, No. 6, 1999, pp. 1165-1178.
[28] A. Kader and S. Lindberg, “Cytosolic Calcium and pH Signaling in Plants under Salinity Stress,” Plant Signaling Behavior, Vol. 5, No. 3, 2010, pp. 233-238. doi:10.4161/psb.5.3.10740
[29] P. M. Hasegawa and R. A. Bressan, “Plant Cellular and Molecular Responses to High Salinity,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 51, 2000, pp. 463-499. doi:10.1146/annurev.arplant.51.1.463
[30] J. A. Herna′ndez, F. J. Corpas, M. Go′mez, L. A. del Rl′o and F. Sevilla, “Salt-Induced Oxidative Stress Mediated by Activated Oxygen Species in Pea Leaf Mitochondria,” Physiologia Plantarum, Vol. 89, No. 1, 1993, pp. 103110. doi:10.1111/j.1399-3054.1993.tb01792.x?
[31] J. A. Herna′ndez, E. Olmos, F. J. Corpas, F. Sevilla and L. A. del Rl′o, “Salt-Induced Oxidative Stress in Chloroplast of Pea Plant,” Plant Science, Vol. 105, No. 2, 1995, pp. 151-167. doi:10.1016/0168-9452(94)04047-8?
[32] J. A. Herna′ndez, A. Jime′nez, P. M. Mullineaux and F. Sevilla, “Tolerance of Pea (Pisum sativum L.) to LongTerm Salt Stress Is Associated with Induction of Antioxidant Defences,” Plant Cell Environment, Vol. 23, No. 8, 2000, pp. 853-862. doi:10.1046/j.1365-3040.2000.00602.x
[33] D. Bartels and R. Sunkar, “Drought and Salt Tolerance in Plants,” Critical Reviews in Plant Science, Vol. 24, No. 1, 2005, pp. 23-58. doi:10.1080/07352680590910410
[34] J. Dat, E. Vandenabeele, M. Vranova′, M. Van Montagu, D. Inze′ and F. Van Breusegem, “Dual Action of the Active Oxygen Species during Plant Stress Responses,” Cellular and Molecular Life Sciences, Vol. 57, No. 5, 2000, pp. 779-795. doi:10.1007/s000180050041
[35] T. S. Gechev, F. Van Breusegem, J. M. Stone, I. Denev and C. Laloi, “Reactive Oxygen Species as Signals that Modulate Plant Stress Responses and Programmed Cell Death,” Bioessays, Vol. 28, No. 11, 2006, pp. 1091-1101. doi:10.1002/bies.20493
[36] G. Noctor, R. De Paepe and C. H. Foyer, “Mitochondrial Redox Biology and Homeostasis in Plants,” Trends in Plant Science, Vol. 12, No. 3, 2007, pp. 125-134. doi:10.1016/j.tplants.2007.01.005
[37] R. Mittler, “Oxidative Stress, Antioxidants and Stress Tolerance,” Trends in Plant Science, Vol. 7, No. 9, 2002, pp. 405-410. doi:10.1016/S1360-1385(02)02312-9
[38] O. Blokhina, E. Virolainen and K. V. Fagerstedt, “Antioxidants, Oxidative Damage and Oxygen Deprivation Stress,” Annals of Botany, Vol. 91, No. 2, 2003 pp. 179-194. doi:10.1093/aob/mcf118
[39] S. Barranco-Medina, T. Krell, I. Finkemeie, F. Sevilla, J. J. Lazaro and K. J. Dietz, “Biochemical and Molecular Characterization of the Mitochondrial Peroxiredoxin PsPrxII F from Pisum sativum,” Plant Physiology and Biochemistry, Vol. 45, No. 10-11, 2007, pp. 729-739. doi:10.1016/j.plaphy.2007.07.017
[40] P. Pulido, R. Cazalis and F. J. Cejudo, “An Antioxidant Redox System in the Nucleus of Wheat Seed Cells Suffering Oxidative Stress,” Plant Journal, Vol. 57, No. 1, 2009, pp. 132-145. doi:10.1111/j.1365-313X.2008.03675.x
[41] N. B. Tripathi, I. Bhatt and K. J. Dietz, “Peroxiredoxins: A Less Studied Component of Hydrogen Peroxide Detoxification in Photosynthetic Organisms,” Protoplasma, Vol. 235, No. 1-4, 2009, pp. 3-15. doi:10.1007/s00709-009-0032-0
[42] N. Rouhier and J. Jacquot, “The Plant Multigenic Family of Thiol Peroxidase,” Free Radical Biology and Medicine, Vol. 38, No. 11, 2005, pp. 1413-1421. doi:10.1016/j.freeradbiomed.2004.07.037
[43] V. Bernier-Villamor, D. A. Sampson, M. J. Matunis and C. D. Lima, “Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between UbiquitinConjugating Enzyme Ubc9 and RanGAP1,” Cell, Vol. 108, No. 3, 2002, pp. 345-356. doi:10.1016/S0092-8674(02)00630-X
[44] N. Rouhier, A. Villarejo and M. Srivastava, “Identi?cation of Plant Glutaredoxin Targets,” Antioxidants and Redox Signalin, Vol. 7, No. 7, 2005, pp. 919-929. doi:10.1089/ars.2005.7.919
[45] I. Finkemeier, M. Goodman, P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove and K. J. Dietz, “The Mitochondrial Type II Peroxiredoxin F Is Essential for Redox Homeostasis and Root Growth of Arabidopsis Thaliana under Stress,” Journal of Biological Chemistry, Vol. 280, No. 13, 2005, pp. 12168-12180. doi:10.1074/jbc.M413189200
[46] C. Laloi, N. Rayapuram, Y. Chartier, J. M. Grienenberger, G. Bonnard and Y. Meyer, “Identification and Characterization of a Mitochondrial Thioredoxin System in Plants,” Proceedings of the National Academy of Sciences, USA, Vol. 98, No. 24, 2001, pp. 14144-14149. doi:10.1073/pnas.241340898
[47] C. T. Liao and C. H. Lin, “Physiological Adaptation of Crop Plants to Flooding Stress,” Proceedings of the National Science Council, Republic of China. Part B, Vol. 25, No. 3, 2001 pp. 148-157.
[48] N. Qiu and C. Lu, “Enhanced Tolerance for Photosynthesis against High Temperature Damage in Salt Adapted Halophyte Atriplex Centralasiatica,” Plant Cell Environment, Vol. 26, No. 3, 2003, pp. 1137-1145. doi:10.1046/j.1365-3040.2003.01038.x
[49] M. J. Jeong, S. C. Park and M. O. Byun, “Improvement of Salt Tolerance in Transgenic Potato Plants by Glyceraldehyde-3 Phosphate Dehydrogenase Gene Transfer,” Molecules and Cells, Vol. 12, No. 2, 2001, pp. 185-189.
[50] N. Holmberg and L. Bulow, “Improving Stress Tolerance in Plants by Gene Transfer,” Trends Plant Science, Vol. 3, No. 2, 1998, pp. 61-66. doi:10.1016/S1360-1385(97)01163-1
[51] I. M. Moller, “Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover and Metabolism of Reactive Oxygen Species,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 52, 2001, pp. 561-591. doi:10.1146/annurev.arplant.52.1.561
[52] H. Sobhanian, R. Razavizadeh, Y. Nanjo, A. A. Ehsanpour, F. R. Jazii, N. Motamed and S. Komatsu, “Proteome Analysis of Soybean Leaves, Hypocotyls and Roots under Salt Stress,” Proteome Science, Vol. 8, No. 19, 2010, pp. 19-33. doi:10.1186/1477-5956-8-19
[53] B. K. Ndimba, S. Chivasa, W. J. Simon and A. R. Slabas, “Identification of Arabidopsis Salt and Osmotic Stress Responsive Proteins Using Two-Dimensional Difference Gel Electrophoresis and Mass Spectrometry,” Proteomics, Vol. 5, No. 16, 2005, pp. 4185-4196. xdoi:10.1002/pmic.200401282
[54] Y. Jiang, B. Yang, N. S. Harris and M. K. Deyholos, “Comparative Proteomic Analysis of NaCl Stress-Responsive Proteins in Arabidopsis Roots,” Journal of Experimental Botany, Vol. 58, No. 13, 2007, pp. 3591-3607. doi:10.1093/jxb/erm207
[55] N. N. V. Kav, S. Srivastava, L. Goonewardene and S. F. Blade, “Proteome-Level Changes in the Roots of Pisum sativum in Response to Salinity,” Annals of Applied Biology, Vol. 145, No. 2, 2004, pp. 217-230. doi:10.1111/j.1744-7348.2004.tb00378.x
[56] G. Fei, Y. Zhou, L. Huang, D. He and G. Zhang, “Proteomic Analysis of Long-Term Salinity Stress-Responsive Proteins in Thellungiella halophila Leaves,” Chinese Science Bulletin, Vol. 53, No. 22, 2008, pp. 3530-3537. doi:10.1007/s11434-008-0455-6
[57] L. D. Noode`n and A. C. Leopold “The Phenomenon of Senescence and Aging in Plants,” Academic Press, San Diego, 1988, pp. 2-50.
[58] S. Gan and R. M. Amasino, “Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin,” Science, Vol. 270, No. 5244, 1995, pp. 1986-1988. doi:10.1126/science.270.5244.1986
[59] J. H. M. Schippers, H. C. Jing, J. Hille and P. P. Dijkwe, “Developmental and Hormonal Control of Leaf Senescence,” In: S. Gan, Ed., Senescence Processes in Plants, Blackwell Publishing, Oxford, 2007, pp. 145-170. doi:10.1002/9780470988855.ch7
[60] Y. S. Noh and R. M. Amasino, “Identification of a Promoter Region Responsible for the Senescence-Specific Expression of SAG12,” Plant Molecular Biology, Vol. 41, No. 2, 1999, pp. 181-194. doi:10.1023/A:1006342412688

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.