Phytoclimatic Dynamics of Mediterranean Forests under Climate Change. A Case Study in a Southern European Pinus sylvestris L. Stand


Some effects of climate change on the composition and competitive capacity of southern European Pinus sylvestris L. forests in the Mediterranean basin were evaluated. The variation over the period 1910-2008 through 30-year mobile averages of a Phytoclimatic Suitability Index (PSI) of the main tree species of the forest cover are used to indicate the competitive hierarchy of Pinus sylvestris and Fagus sylvatica L. The methodology was applied at a specific location on the Spanish south-facing slopes of the Pyrenees mountain range in the Iberian Peninsula, where the increase in the average temperature was 1.4?C in the period of observation. The results indicated that the apparent equilibrium between the two species studied changed from the 1934-1963 average. Due to the loss of competitive capacity of Scots pine with respect to European beech, particularly from the years 1970-1999, the model predicted an inversion of the situation as it was up until now, so that beech had a higher PSI than pine. The phytoclimatic approach proposed here offers new methodological horizons for the study of the effects of climate change on the future of the forests.

Share and Cite:

J. García-López and C. Allué, "Phytoclimatic Dynamics of Mediterranean Forests under Climate Change. A Case Study in a Southern European Pinus sylvestris L. Stand," American Journal of Plant Sciences, Vol. 4 No. 3A, 2013, pp. 655-662. doi: 10.4236/ajps.2013.43A084.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. E. Davis, R. G. Shaw and J. R. Etterson, “Evolutionary Responses to Climate Change,” Ecology, Vol. 86, 2005, pp. 1704-1714. doi:10.1890/03-0788
[2] A. Kremer, “How Well Can Existing Forests Withstand Climate Change?” In: J. Koskela, A. Buck and E. Tessier du Cros, Eds., Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe, Bioversity International, Rome, 2007, pp. 3-17.
[3] M. Lindner, M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia, R. Seidl, S. Delzon, P. Corona, M. Kolstrom, M. J. Lexer and M. Marchetti, “Climate Change Impacts, Adaptative Capacity and Vulnerability of European Forest Ecosystems,” Forest Ecology and Management, Vol. 259, No. 4, 2010, pp. 698-709. doi:10.1016/j.foreco.2009.09.023??
[4] D. L. Spittlehouse and R. B. Stewart, “Adaptation to Climate Change in Forest Management,” British Columbia Journal of Ecosystems and Management, Vol. 4, No. 1, 2003, pp. 1-11.
[5] A. E. Ogden and J. L. Innes, “Incorporating Climate Change Adaptation Considerations into Forest Management and Planning in the Boreal Forest,” International Forestry Review, Vol. 9, No. 3, 2007, pp. 713-733. doi:10.1505/ifor.9.3.713
[6] R. D. Holt, “The Microevolutionary Consequences of Climate Change,” Trends in Ecology and Evolution, Vol 5, No. 9, 1990, pp. 311-315. doi:10.1016/0169-5347(90)90088-U
[7] J. A. Wiens, D. Stralberg, D. Jongsomjit, C. A. Howell and M. A. Snyder, “Niches, Models, and Climate Change: Assessing the Assumptions and Uncertainties,” PNAS, Vol. 106, No. 2, 2009, pp. 19729-19736. doi:10.1073/pnas.0901639106
[8] A. J. Davis, L. S. Jenkinson, J. L. Lawton, B. Shorrocks and S. Wood, “Making Mistakes When Predicting Shifts in Species Range in Response to Global Warming,” Nature, Vol. 391, 1998, pp. 783-786. doi:10.1038/35842
[9] R. G. Pearson and T. P. Dawson, “Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful?” Global Ecology and Biogeography, Vol. 12, No. 5, 2003, pp. 361-371. doi:10.1046/j.1466-822X.2003.00042.x
[10] M. B. Araújo and C. Rahbek, “How Does Climate Change Affect Biodiversity?” Science, Vol. 313, No. 5792, 2006, pp. 1346. doi:10.1126/science.1131758
[11] P. Barnard and W. Thuiller, “Global Change and Biodiversity: Future Challenges,” Biology Letters, Vol. 4, No. 5, 2008, pp. 553-555. doi:10.1098/rsbl.2008.0374
[12] W. Thuiller, S. Lavorel, M. T. Sykes and M. B. Araújo, “Using Niche-Based Modelling to Assess the Impact of Climate Change on Tree Functional Diversity in Europe,” Diversity and Distributions, Vol. 12, No. 1, 2006, pp. 4960. doi:10.1111/j.1366-9516.2006.00216.x
[13] M. Benito, R. Sánchez de Dios and H. Sainz-Ollero, “Effects of Climate Change on the Distribution of Iberian Tree Species,” Applied Vegetation Science, Vol. 11, No. 2, 2008, pp. 169-178. doi:10.3170/2008-7-18348
[14] F. M. Chmielewski and T. Rotzer, “Response of Tree Phenology to Climate Change across Europe,” Agricultural and Forest Meteorology, Vol. 108, No. 2, 2001, pp. 101-112. doi:10.1016/S0168-1923(01)00233-7?
[15] P. A. Harrison, P. M. Berry, N. Butt and M. New, “Modelling Climate Change Impacts on Species’ Distributions at the European Scale: Implications for Conservation Policy,” Environmental Science & Policy, Vol. 9, No. 2, 2006, pp. 116-128. doi:10.1016/j.envsci.2005.11.003
[16] D. Tonti, C. Estreguil, M. Marchetti, K. Oehmichen, G. Chirici, K. Troeltzsch and K. Watts, “Linking and Harmonizing Forest Spatial Pattern Analyses at European, National and Regional Scales for a Better Characterization of Forest Vulnerability and Resilience,” European Commission, Joint Research Centre and Institute for Environment and Sustainability, 2010.
[17] J. M. Garcia-Lopez and C. Allué, “A PhytoclimaticBased Indicator for Assessing the Inherent Responsitivity of the European Forests to Climate Change,” Ecological Indicators, Vol. 18, 2010, pp. 73-81. doi:10.1016/j.ecolind.2011.10.004
[18] R. M. M. Crawford, “Plants at the Margin. Ecological Limits and Climate Change,” Cambridge University Press, Cambridge, 2008. doi:10.1017/CBO9780511754906
[19] F. K. Holtmeier, “Mountain Timberlines. Ecology, Patchiness, and Dynamics. Advances in Global Change Research,” Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
[20] M. Barbéro, R. Loisel and P. Quézel, “Pines of the Mediterranean Basin,” In: D. M. Richardson, Ed., Ecology and Biogeography of Pinus, Cambridge University Press, Cambridge, 1998, pp. 153-170.
[21] I. Ca?ellas, F. Fartínez and G. Montero, “Silviculture and Dynamics of Pinus sylvestris L. Stands in Spain,” Investigacion Agraria. Sistemas y Recursos Forestales, Vol. 1, No. 1, 2000, pp. 233-253.
[22] U. Cubash, H. Von Storch, J. Wastewitz and E. Zorita, “Estimates of Climate Change in Southern Europe Derived from Dynamical Climate Model Output,” Climate Research, Vol. 7, No. 2, 1996, pp. 129-149. doi:10.3354/cr007129
[23] R. T. Watson, M. C. Zinyowera and R. H. Moss, ”The Regional Impacts of Climate Change: An Assessment of Vulnerability,” Special report of IPCC Working Group II, Cambridge University Press, Cambridge, 1997.
[24] E. Gutiérrez, “Dendroecological Study of Fagus sylvatica L. in the Montseny Mountains (Spain),” Acta Oecologica Oecology Plant, Vol. 9, 1988, pp. 301-309.
[25] A. Baselga and M. B. Araújo, ”Individualistic vs. Community Modelling of Species Distributions under Climate change,” Ecography, Vol. 32, No. 1, 2009, pp. 55-65. doi:10.1111/j.1600-0587.2009.05856.x
[26] M. B. Araújo amd M. Luoto, ”The Importance of Biotic Interactions for Modelling Species Distributions under Climate Change,” Global Ecology and Biogeography, Vol. 16, No. 6, 2007, pp. 743-753. doi:10.1111/j.1466-8238.2007.00359.x
[27] J. M. García-López and C. Allué, “Modelling Phytoclimatic Versatility as a Large Scale Indicator of Adaptive Capacity to Climate Change in Forest Ecosystems,” Ecological Modelling Vol. 222, No. 8, 2011, pp. 1436-1447. doi:10.1016/j.ecolmodel.2011.02.001
[28] R. G. Pearson, “Species’ Distribution Modelling for Conservation Educators and Practitioners,” Lessons in Conservation, Vol. 3, 2010, pp. 54-89.
[29] J. Franklin, “Mapping Species Distributions. Spatial Inference and Prediction,” Cambridge University Press, Cambridge, 2009.
[30] G. E. Hutchinson, “Concluding Remarks,” Cold Spring Harbor Symposium on Quantitative Biology, Vol. 22, 1957, pp. 415-457. doi:10.1101/SQB.1957.022.01.039
[31] F. P. Preparata and M. I. Shamos, “Computational Geometry: An Introduction,” Springer-Verlag, New York, 1985.
[32] W. K. Cornwell, D. W. Schwilk and D. D. Ackerly, “A Trait-Based Test for Habitat Filtering: Convex Hull Volume,” Ecology, Vol. 87, No. 10, 2006, pp. 1070-1080.
[33] J. L. Allue-Andrade, “Atlas fitoclimaTico de Espa?a. Taxonomías. Phytoclimatic Atlas of Spain. Taxonomies,” Ministerio de Agricultura, Pesca y Alimentacion. Instituto Nacional de Investigaciones Agrarias, Madrid, 1990.
[34] M. Brunet, M. J. Casado, M. De Castro, P. Galán, J. A. Lopez, J. M. Martin, A. Pastor, E. Petisco, P. Ramos, J. Ribalaygua, E. Rodriguez, I. Sanz and L. Torres, “Generación de Escenarios Regionalizados de Cambio Climá Tico Para Espana,” Agencia Estatal de Meteorología, Madrid, 2008.
[35] H. Walter, “Vegetationszonen und Klima,” Eugen Ulmer, Stuttgart, 1970.
[36] P. E. Hulme, “Adapting to Climate Change: Is There Scope for Ecological Management in the Face of a Global Threat?” Journal of Applied Ecology, Vol. 42, No. 5, 2005, pp. 784-794. doi:10.1111/j.1365-2664.2005.01082.x
[37] E. S. Poloczanzka, S. J. Hawkins, A. J. Southward and M. T. Burrows, “Modelling the Response of Populations of Competing Species to Climate Change,” Ecology, Vol. 89, No. 11, 2008, pp. 3138-3149. doi:10.1890/07-1169.1
[38] T. D. Price and M. Kirkpatrick, “Evolutionarily Stable Range Limits Set by Interspecific Competition,” Proceedings B of the Royal Society, Vol. 276, No. 1661, 2008, pp. 1429-1434. doi:10.1098/rspb.2008.1199
[39] A. Guisan and W. Thuiller, “Predicting Species Distribution: Offering More than Simple Habitat Models,” Ecology Letters, Vol. 8, No. 9, 2005, pp. 993-1009. doi:10.1111/j.1461-0248.2005.00792.x
[40] X. Morin and I. Chuine, “Niche Breadth, Competitive Strength and Range Size of Tree Species: A Trade-Off Based Framework to Understand Species Distribution,” Ecology Letters, Vol. 9, No. 2, 2006, pp. 185-195. doi:10.1111/j.1461-0248.2005.00864.x
[41] W. Thuiller, C. Albert, M. B. Araújo, P. M. Berry, M. Cabeza, A. Guisan, T. Hickler, G. F. Midgley, J. Paterson, F. M. Schurrh, M. T. Sykes and N. E. Zimmermann, “Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges,” Perspectives in Plant Ecology, Evolution and Systematics, Vol. 9, No. 3-4, 2008, pp. 137-152. doi:10.1016/j.ppees.2007.09.004
[42] O. Broennimann, W. Thuiller, G. O. Hughes, G. F. Midgley, J. R. M. Alkemade and A. Guisan, “Do Geographic Distribution, Niche Property and Life Form Explain Plants Vulnerability to Global Change?” Global Change Biology, Vol. 12, No. 6, 2006, pp. 1079-1093. doi:10.1111/j.1365-2486.2006.01157.x
[43] J. W. Williams, S. T. Jackson and J. E. Kutzbach, “Projected Distributions of Novel and Disappearing Climates by 2100 AD,” PNAS, Vol. 104, No. 14, 2007, pp. 5738-5742. doi:10.1073/pnas.0606292104
[44] J. M. Garcia-Lopez and C. Allue, “Modelling Future No-Analogue Climate Distributions: A World-Wide Phytoclimatic Niche-Based Survey,” Global and Planetary Change, Vol. 101, 2013, pp. 1-11. doi:10.1016/j.gloplacha.2012.12.001
[45] M. C. Fitzpatrick and W. W. Hargrove, “The Projection of Species Distribution Models and the Problem of Non-Analog Climate,” Biodiversity and Conservation, Vol. 18, No. 8, 2009, pp. 2255-2261. doi:10.1007/s10531-009-9584-8

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.