Effect of CuI Anode Buffer Layer on the Growth of Polymers Thin Films and on the Performances of Organic Solar Cells


Organic photovoltaic cells using polymer belonging to the aniline-heteroaryl family as electron donor have been achieved by thermal evaporation. We show that the properties of the polymer film, morphology, molecule order and conductivity depend strongly on the bottom anode buffer layer. While cells without anode buffer layer or with MoO3 or CuI anode buffer layer have been probed, we show that CuI allows improving strongly the cells efficiency through an improvement of the morphology and conductivity of the polymer film. This shows that although it is necessary a good band matching at the interface, this is not sufficient, because the templating effect of CuI on the polymer film is primordial for photovoltaic cells improvement.

Share and Cite:

P. Zamora, F. Díaz, M. Valle, L. Cattin, G. Louarn and J. Bernède, "Effect of CuI Anode Buffer Layer on the Growth of Polymers Thin Films and on the Performances of Organic Solar Cells," Natural Resources, Vol. 4 No. 1A, 2013, pp. 123-133. doi: 10.4236/nr.2013.41A016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Bhadra, N. Singha and D. Khastgir, “Effect of Aromatic Substitution in Aniline on the Properties of Polyanil” European Polymer Journal, Vol. 44, No. 6, 2008, pp. 1763-1770.
[2] Z. Liu, W. Guo, D. Fu and W. Chen, “p-n Heterojunction Diodes Made by Assembly of ITO/Nano-Crystalline TiO 2/Polyaniline/ITO” Synthetic Metals, Vol. 156, No. 5, 2006, pp. 414-416.
[3] J. Gao, J. M. Sansinena and H. L. Wang, “Chemical Vapor Diven Polyaniline Sensor/Actuators” Synthetic Metals, Vol. 135-136, No. 4, 2003, pp. 809-810.
[4] A. Bishop and P. Gouma, “Leuco-Emeraldine Based Polyaniline—Poly-Vinyl-Pyrrolidone Electrospun Composites and Bio-Composites: A Preliminary Study of Sensing Behaviour,” Reviews on Advanced Materials Science, Vol. 3, No. 10, 2005, pp. 209-214.
[5] J. Upadhyay, P. Gaston, A. A. Levy and A. Wassermann “Cationic Polymerisation of a Bicyclopentyl Derivative: Mechanism of Formation of Deeply Coloured, Electrically Conducting Polymers,” Journal of The Chemical Society, Vol. 593, 1965, pp. 3252-3266. doi:10.1039/jr9650003252
[6] C. F. Blakely, R. J. Gillespie, L. Roubinek, A. Wassermann and R. F. M. White, “Conversion of Cyclopentadiene into New Bicyclopentyl Derivatives; Structure Determination with the Help of Proton Magnetic Resonance Spectroscopy,” Journal of The Chemical Society, Vol. 374, 1961, pp. 1939-1945. doi:10.1039/jr9610001939
[7] J. Upadhyay, J. B. G. Wallace and A. Wassermann, “Proton Accetor Properties and Electrical Conductance of Deeply Coloured Cyclopentadiene Polymers,” Polymer, Vol. 7, No. 9, 1966, pp. 465-468.
[8] P. V. French, L. Roubinek and A. Wassermann, “Preparation and Properties of Deeply Coloured, Electrically Conducting Polymers,” Journal of The Chemical Society, Vol. 376, 1961, pp. 1953-1963. doi:10.1039/jr9610001953
[9] M. Armour, A. G. Davies and A. Wassermann, “Colored Electrically Conducting Polymers from Furan, Pyrrole, and Thiophene,” Journal of Polymer Science part A, Vol. 5, No. 7, 1966, pp. 1527-1538.
[10] C. E. H. Bawn, C. Fitzsimmons and A. Ledwith, “Reactivity and Mechanism in the Cationicpolymerization of Isobutyl Vinyl Ether,” Polymer, Vol. 12, No. 2, 1971, pp. 119-140.
[11] M. Talu, M. Kabasakolglu, F. Yildirin and B. Sari, “Electrochemical Synthesis and Characterization of Homopolymers of Polyfuran and Polythiophene and Bipolymer Films Polyfuran/Polythiophene and Polythiophene/Polyfuran,” Applied Surface Science, Vol. 181, No. 1, 2001, pp. 51-60.
[12] I. Carrillo, E. Sanchez de la Blanca and M. J. GonzalezTejera, “Influence of the Electropolymerisation Time on the Nucleation Mechanism, Structure and Morphology of Polyfurane/Perchlorate Doped Films,” Polymer, Vol. 42, No. 1, 2001, pp. 9447-9453. doi:10.1016/S0032-3861(01)00500-6
[13] M. Kabasakaloglu, M. Talu, F. Yildirim and B. Sari, “The Electrochemical Homopolymerization of Furan and Thiophene and the Structural Elucidation of Their Bipolymer Films,” Applied Surface Science, Vol. 218, No. 1, 2003, pp. 85-97.
[14] F. C. Krebs, “A Review of Printing and Coating Techniques,” Solar Energy Materials & Solar Cells, Vol. 93, No. 4, 2009, pp. 394-412. doi:10.1016/j.solmat.2008.10.004
[15] J. C. Bernede, “Organic Photovoltaic Cells: History, Principle and Techniques,” Journal of the Chilean Chemical Society, Vol. 53, No. 3, 2008, pp. 1549-1564.
[16] A. Godoy, L. Cattin, L. Toumi, F. R. Diaz, M. A del Valle and J. C. Bernede, “Effects of the Buffer Layer Inserted between the Transparent Conductive Oxide Anode and the Organic Electron Donor,” Solar Energy Materials & Solar Cells, Vol. 94, No. 4, 2010, pp. 648-654.
[17] J. C. Bernède, L. Cattin, M. Morsli and Y. Berredjem, “Ultra-Thin Metal Layer Passivation of the Transparent Conductive Anode in Organic Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 92, No. 11, 2008, pp. 15081520.
[18] H. Wu, T. Song, Y. Jin and B. Sun, “High Performance Solar Cell Based on Ultra-Thin Oly(3-Hexylthiophene): Fullerene Film without Thermal and Solvent Annealing,” Applied Physics Letters, Vol. 99, No. 14, 2011, pp. 735-748.
[19] S. Han, S, W. S. Shin, M. Seo and D. Gupta, “Improving Performance of Organic Solar Cells Using Amorphous Tungsten Oxides as an Interfacial Buffer Layer on Transparent Anodes,” Organic Electronics, Vol. 10, No. 5, 2009, pp. 791-797.
[20] M. T. Grenier, M. G. Helander and Z. B. Wang, “Highly Simplified Phosphorescent Organic Light Emitting Diode with >20% External Quantum Efficiency at >10,000cd/ m2v,” Applied Physics Letters, Vol. 96, No. 21, 2010, pp. 213230.
[21] S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim and J. W. Kang, “Organic Solar Cells Employing Magnetron Sputtered p-Type Nickel Oxide Thin Film as the Anode Buffer Layer,” Solar Energy Materials & Solar Cells, Vol. 94, No. 12, 2012, pp. 23322346.
[22] P. Sullivan, T. S. Jones, A. J. Ferguson and S. Heutz, “Structural Templating as a Route to Improved Photovoltaic Performance in Copper Phthalocyanine/Fullerene (C60) Heterojunctions,” Applied Physics Letters, Vol. 91, No. 23, 2007, pp. 233114-233126.
[23] C. H. Cheng, J. Wang, G. T. Du and S. H. Shi, “Organic Solar Cells with Remarkable Enhanced Efficiency by Using a CuI Buffer to Control the Molecular Orientation and Modify the Anode,” Applied Physics Letters, Vol. 97, No. 8, 2010, p. 83305.
[24] B. P. Rand, B. P, D. Cheyns, K. Vasseur, N. C. Giebink and S. Nothy, “The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction”, Advanced Functional Materials, Vol. 22, No. 14, 2012, pp. 2987-2995.
[25] T. M. Kim, J. Kim, H. Shim and J. Kim, “High Efficiency and High Photo-Stability Zinc-Phthalocyanine Based Planar Heterojunction Solar Cells with a Double Interfacial Layer,” Applied Physics Letters, Vol. 101, No. 11, 2012, p. 113301. doi:10.1063/1.4748123
[26] J. C. Bernède, A. Godoy, L. Cattin, F. R. Diaz, M. Morsili and M. A. del Valle, “Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers,” 1st Edition, M. D. Rugescu, In Tech, 2 February 2010.
[27] P. Kumar and S. Chand, “Recent Progress and Future Aspects of Organic Solar Cells,” Progress in Photovoltaics: Research and applications, Vol. 20, No. 4, 2012, pp. 377-415.
[28] P. Peumans and S. R. Forrest, “Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells,” Applied Physics Letters, Vol. 79, No. 1, 2001, pp. 126-128. doi:10.1063/1.1384001
[29] W. Zeng, K. S. Yong, Z. M. Kam, F. Zhu and Y. Li, “Effect of Blend Layer Morphology on Performance of ZnPc:C60-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 97, No. 13, 2012, p. 133304.
[30] P. Kovacik, G. Sforazzini, A. G. Cook, S. M. Willis, P. S. Grant and H. E. Assender, “Vacuum-Deposited Planar Heterojunction Polymer Solar Cells,” Applied Material Interfaces, Vol. 3, No. 1, 2011, pp. 11-15.
[31] E. Nasybulin, F. Feinstein and M. Cox. “Electrochemically Prepared Polymer Solar Cell by Three-Layer Deposition of Poly(3,4-Ethylenedioxythiophene)/Poly(2,2′Bithiophene)/Fullerene (PEDOT/PBT/C60),” Polymer, Vol. 52, No. 16, 2011, pp. 3627-3632.
[32] M. Can, S. Uzuna and N. Pekmez, “Chemical Polymerization of Aniline Using Periodic Acid in Acetonitrile,” Synthetic Metals, Vol. 159, 14, 2009, pp. 1486-1490.
[33] S. E. Shaheen and C. J. Brabec, “2.5% Efficient Organic Plastic Solar Cells,” Applied Physic Letters, Vol. 78, No. 6, 2001, p. 841.
[34] L. Cattin, F. Dahou, Y. Lare, M. Morsli, R. Tricot, K. Jondo, A. Khelil, K. Napo and J. C. Bernède, “MoO3 Surface Passivation of the Transparent Anode in Organic Solar Cells Using Ultrathin Films,” Journal of Applied Physic Letters, Vol. 105, No. 3, 2009, p. 34507.
[35] J. Ryu and C. Jang, “Supramolecular Reactor in Aqueous Environment: Aromatic Cross Suzuki Coupling Reaction at Room Temperature,” Journal of Organic Chemistry, Vol. 70, No. 2, 2005, pp. 8956-8962.
[36] R. F. Slazman and J. Xue, “The Effects of Copper Phthalocyanine Purity on Organic Solar Cell Performance,” Organic Electronics, Vol. 6, No. 5, 2005, pp. 242-450.
[37] Y. Berredjem, N. Karst, L. Cattin, A. Lakhdar-Toumi, A. Godoy, G. Soto. F. R. Diaz, M. Morsli and J. C. Bernede, “The Open Circuit Voltage of Encapsulated Plastic Photovoltaic Cells,” Dyes and Pigments, Vol. 78, No. 2, 2008, pp. 148-156.
[38] P. P. Zamora, M. B. Camara, I. A. Jessop and F. R. Diaz, “Synthesis, Characterization, Morphology and Photovoltaic Properties of Aniline-Tiophene Based Polymers,” International Journal of Electrochemical Science, Vol. 7, No. 7, 2012, pp. 8276-8288.
[39] J. J. Lère-Porte, E. Moreau and C. Torreilles, “Highly Conjugated Poly(Thiophene)s—Synthesis of Regioregular 3-Alkylthiophene Polymers and 3-Alkylthiophene/ Thiophene Copolymers” European Journal of Organic Chemistry, Vol. 2001, No. 7, 2001, pp. 1249-1258. doi:10.1002/1099-0690(200104)2001:7<1249::AID-EJOC1249>3.0.CO;2-F
[40] S. Admassie, O. Inganas, W. Mammo, E. Perzon and M. R. Andersson, “Electrochemical and Optical Studies of the Band Gaps of Alternating Polyfluorene Copolymers,” Syntetic Metals, Vol. 156, No. 7, pp. 614-624.
[41] A. Charas, J. Morgado, J. Martinho, L. Alcácer, S. Lim, R. Friend and F. Cacialli, “Synthesis and Luminescence Properties of Three Novel Polyfluorene Copolymers,” Polymer, Vol. 44, No. 6, 2003, pp. 1843-1455.
[42] J.C. Bernède, L. Cattin, S. Ouro Djobo, M. Morsil, S. R. B. Kanth, S. Patil, P. Leriche, F. R. Diaz and M. A. del Valle, “Influence of the Highest Occupied Molecular Orbital Energy Level of the Donor Material on the Effectiveness of the Anode Buffer Layer in Organic Solar Cells,” Physica Status Solidi A, Vol. 208, No. 8, 2011, pp. 1989-1994.
[43] N. Abdelwahab, D. El-Nashar and D. Abd El-Ghaffar, “Polyfuran, Polythiophene and Their Blend as Novel Antioxidants for StyreneButadiene Rubber Vulcanizates,” Materials and Design, Vol. 32, No. 1, 2011, pp. 238-245.
[44] H. Peisert, T. Schweiger, J. M. Auerthammer, M. Kkunpfer and M. S. Golden, “Order on Disorder: Copper Phthalocyanine Thin Films on Technical Substrates,” Journal of Applied Physics, Vol. 90, No. 1, 2001, pp. 466-469.
[45] D. Qi, J. Sun, X. Gao and S. Wang, “Large Damage Threshold and Small Electron Escape Depth in X-ray Absorption Spectroscopy of a Conjugated Polymer Thin Film,” Langmuir, Vol. 26, No. 1, 2006, pp. 165-172.
[46] A. J. Blake, N. R. Brooks, N. R. Champness, P. A. Cooke and M. Crew, “Copper(I) iodide Coordination NetworksControlling the Placement of (CuI)∞ Ladders and Chains within Two-Dimensional Sheets,” Crystal engineering, Vol. 2, No. 2, 1999, pp. 181-185.
[47] T. S. Lobana, S. Khanna, A. Castineiras, G. Hundal and Z. Anorg, “Synthesis of an Unprecedented CuI Polymer with Alternate Cu(μ-S)2Cu and Cu(μ-Cl)2Cu Cores Bridged by Pyridine-2-Carbaldehyde Thiosemicarbazone,” Allgemeine Chemie, Vol. 636, No. 3, 2010, pp. 454-456.
[48] A. Gallego, O. Castillo, C. J. Gómez-García, F. Zamora and S. Delgado, “Electrical Conductivity and Luminescence in Coordination Polymers Based on Copper(I)Halides and Sulfur-Pyrimidine Ligands,” Inorganic Chemistry, Vol. 51, No. 1, 2012, pp. 718-727.
[49] S. Li-Sha, W. Qing-Li and N. Yun-Yin, “Syntheses, Structure, and Photoluminescent and Thermal Properties of a Novel Coordination Polymer [CuI(3-bpfob)]n with One-Dimensional Helical Chain” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 41, No. 9, 2011, pp. 1080-1085.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.