Molecular Relationships among Different Seryian Aegilops Species (Poaceae)

Abstract

Aegilops has been considered a complex genus with as many as 22 species in Syria. The current study has used 585 nucleotides from 5.8S nuclear ribosomal DNA gene and internal transcribed spacer 2 for these different species. These data were aligned manually and subjected to bioinformatics manipulation in order to construct the genetic relationship among these species. Three statistical methods (maximum-parsimony-MP, maximum-likelihood-ML and neighborjoining-NJ) were used to execute the most likely relationship. The constructed genetic relationship showed homogeneinty in clustering of the species of the same plant type (A, B or C) with each other. A single NJ tree and a single ML tree were obtained with slight difference in topology within each plant type. Both trees disagreed with our previous finding in that A. searsii, speltoides and A. longissima clustered in one group and the first two species were sisters while A. caudata was out. Therefore, A. speltoides was not the oldest among them and these differences could be related to the difference in taxon sampling size. This study, however, supported our previous molecular finding and did not support the previous karyotypic study in that A. searsii was not the oldest, A. caudata was not recently originated and both A. longissima and A. speltoides were not intermediate. The molecular markers and taxon sampling size are therefore mandatory in clarifying the genetic diversity of closely related species, particularly, those which possess an economic importance like Aegilops.

Share and Cite:

A. Sliai and S. Amer, "Molecular Relationships among Different Seryian Aegilops Species (Poaceae)," Natural Resources, Vol. 4 No. 1, 2013, pp. 76-81. doi: 10.4236/nr.2013.41009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Mouterde, “Nouvelle Flore du Liban et de la Syrie,” Vol. 1, No. l, Impiemerie Catholique, Beyrouth, 1966.
[2] R. Riley and V. Chapman, “Evidence on the Origin of the B-Genome of Wheat,” Journal of Heredity, Vol. 49, No. 3, 1958, pp. 91-98.
[3] S. Boubes-Hammoud, “Contribution de l’Etude Caryosystematique des Especes d’Aegilops et de Leurs Raports avec les Bles Cultives,” Doct. d’Etat, Université Louis Pasteur, de Strasbourg, 1986.
[4] A. Sliai, S. Boubes-Hammoud and G. H. Ayash, “Contribution l’Etude de la Diversite Chromosomique d’Aegilops en Syrie, ”Bassel Al Assad Journal, Vol. 7, 1999, pp. 135-156.
[5] H. Meimberg, K. J. Rice, N. F. Milan, C. C. Njoku, J. K. Mckay, “Multiple Origins Promote the Ecological Amplitude of Allopolyploid Aegilops (Poaceae), ”American Journal of Botany, Vol. 96, No. 7, 2009, pp. 1262-1273. doi:10.3732/ajb.0800345
[6] N. Arrigo, F. Felber, C. Parisod, S. Buerki, N. Alvarez, J. David and R. Guadagnuolo, “Origin and Expansion of the Allotetraploid Aegilops geniculata, a Wild Relative of Wheat,” New Phytologist, Vol. 187, No. 4, 2010, pp. 1170-1180. doi:10.1111/j.1469-8137.2010.03328.x
[7] A. I. Sepsi, “Molecular Cytogenetic Characterisation of a Leaf-Rust Resistant Wheat-Thinopyrum ponticum Partial Amphiploid,” Doctoral Dissertation, Eotvos Lorand University, Budapest, 2010.
[8] K. G. Thomas and P. J. Bebeli, “Genetic Diversity of Greek Aegilops Species Using Different Types of Nuclear Genome Markers,” Molecular Phylogenetics and Evolution, Vol. 56, No. 3, 2010, pp. 951-961. doi:10.1016/j.ympev.2010.04.041
[9] A. M. Sliai and S. A. M. Amer, “Contribution of Chloroplast DNA in the Biodiversity of Some Aegilops Species,” African Journal of Biotechnology, Vol. 10, No. 12, 2011, pp. 2212-2215.
[10] L. M. Alnaddaf, M. Y. Moualla, N. Haider, “The Genetic Relationships among Aegilops L. and Triticum L. Species, ”Asian Journal of Agricultural Sciences, Vol. 4, No. 5, 2012, pp. 352-367.
[11] D. L. Swofford, “PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods,” Version 4, Sinauer, Sunderland, 2003.
[12] D. Posada and K. A. Crandall, “MODELTEST: Testing the Model of DNA Substitution,” Bioinformatics, Vol. 14, No. 9, 1998, pp. 817-818. doi:10.1093/bioinformatics/14.9.817
[13] J. R. Witcombe, “A Guide to the Species of Aegilops L. Their Taxonomy, Morphology and Distribution,” IBPGR Secretariat, Rome, 1983.
[14] T. Terachi and K. Tsunewaki, “The Molecular Basis of Genetic Diversity among Cytoplasms of Triticum and Aegilops. V. Mitochondrial Genome Diversity among Aegilops Species Having Identical Chloroplast Genomes,” Theoretical Applied Genetics, Vol. 73, No. 2, 1986, pp. 175-181. doi:10.1007/BF00289272
[15] R. A. Queen, B. M. Gribbon, C. James, P. Jack and A. J. Flavell, “Retrotransposon-Based Molecular Markers for Linkage and Genetic Diversity Analysis in Wheat,” Molecular Genetics and Genomics, Vol. 271, No. 1, 2004, pp. 91-97. doi:10.1007/s00438-003-0960-x
[16] E. Al-Ahmar, N. Haider and H. Azzam, “Genetic Relationships among Aegilops L. Species Using DNA Molecular Markers,” General Commission for Scientific Agricultural Research, Gene Bank Division, Faculty of Agriculture, Damascus University, Syria, 2010.
[17] G. T. Konstantinos and P. J. Bebeli, “Genetic Diversity of Greek Aegilops Species Using Different Types of Nuclear Genome Markers,” Molecular Phylogenetics and Evolution, Vol. 56, No. 3, 2010, pp. 951-961. doi:10.1016/j.ympev.2010.04.041
[18] M. W. van Slageren, “Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae),” Wageningen Agricultural University Press, Wageningen, 1994.
[19] H. Kihara, “Consideration on the Evolution and Distribution of Aegilops Species Based on the Analyser-Method,” Cytologia, Vol. 19, No. 4, 1954, pp. 336-357. doi:10.1508/cytologia.19.336
[20] Y. Yen and G. Kimber, “Genomic Relationships of Triticum searsii to Other S-Genome Diploid Triticum Species,” Genome, Vol. 33, No. 3, 1990, pp. 369-373. doi:10.1139/g90-056
[21] T. Sasanuma, K. Chabane, T. R. Endo and J. Valkoun, “Characterization of Genetic Variation in and Phylogenetic Relationships among Diploid Aegilops Species by AFLP: Incongruity of Chloroplast and Nuclear Data,” Theoretical Applied Genetics, Vol. 108, No. 4, 2004, pp. 612-618. doi:10.1007/s00122-003-1485-8
[22] E. A. Salina, I. G. Adonina, T. Y. Vatolina and N. Kurata, “A Comparative Analysis of the Composition and Organization of Two Subtelomeric Repeat Families in Aegilops speltoides Tausch and Related Species, ”Genetica, Vol. 122, No. 3, 2004, pp. 227-237. doi:10.1007/s10709-004-5602-7
[23] G. Petersen, O. Seberg, M. Yde and K. Berthelsen, “Phylogenetic Relationships of Triticum and Aegilops and Evidence for the Origin of the A, B, and D Genomes of Common Wheat (Triticum aestivum),” Molecular Phylogenetics and Evolution, Vol. 39, No. 1, 2006, pp. 70-82. doi:10.1016/j.ympev.2006.01.023

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.